TDDFT Study of the Electronic Excitation Spectra of Chlorophyllide a and Pheophorbide a in Solvents Zheng-wang Qu Humboldt Universität zu Berlin, Institut für Physik, AG Photobiophysik, Newtonstr. 15, Berlin E-mail: <u>zheng@physik.hu-berlin.de</u> SFB450 subproject C3

Motivated by recent efforts in our group on:

- Laser pulse control of exciton transfer in light harvesting complexes
- Optical properties of supermolecular chromophore complexes
- Mixed quantum-classical description including vibronic structures

- 1. Introduction: molecular structures, remaining problems
- 2. Density Functional Theory (DFT) and Time-Dependent DFT
- 3. Polarizable Continuum Model (PCM) for solvents
- 4. Results: method test, solvent effects, new spectral assignment
- 5. Conclusions

Short Notation:

Pheo : Pheophorbide a

Chlo : Chlorophyllide a

CT : Charge-Transfer state

eV as energy unit:

 $1 \text{ eV} = 1000 \text{ meV} = 8065.5 \text{ cm}^{-1} = 627.5 \text{ kcal/mol}$

Z.-W. Qu, H. Zhu, V. May, R. Schinke, J. Phys. Chem. B, 2009, 113(14), 4817-4825.

Exchange-correlation functionals E_{xc} $E_{HF} = V + \langle h\rho \rangle + \frac{1}{2} \langle \rho J(\rho) \rangle - \frac{1}{2} \langle \rho K(\rho) \rangle$ $E_{DFT} = V + \langle h\rho \rangle + \frac{1}{2} \langle \rho J(\rho) \rangle + E_X[\rho] + E_C[\rho]$ Total n-n 1e e-e E_{xc} : exchange-correlation functional (a) *Local* Density Approximation (LDA): good for solids $E_{XC}^{LDA}[\rho] = \int \rho(\mathbf{r}) \varepsilon_{XC}(\rho(\mathbf{r})) d^3 r \iff \text{homogenous electron gas}$ exchange-correlation energy density (b) Generalized Gradient Approximations (GGA): BP86, ... $E_{XC}^{GGA}[\rho] = \int \rho(\mathbf{r}) \varepsilon_{XC}(\rho(\mathbf{r}), \nabla \rho(\mathbf{r})) d^3r$ good structure & energy for solids and molecules (c) Hybrid functionals (mixing nonlocal HF-exchange): B3LYP, ... $E_{XC} = (1-A) E_X + A E_X^{HF} + E_c$ A = 20%6

		Nature of	ex	cited	d states				
Assign	ment:	Excitation energy, Oscillator	stre	ngth,	Main trans	sitio	n configur	atio	ns
State	E (eV) 2.114	Main Coefficients 0.588 (1→1*)			Pheo		Chl		
osc	(0.18)		Ν	State	E (eV)	α	E (eV)	α	Comments
			1	π,π*	2.114 (0.18)	93	2.106 (0.24)	87	Qy
			2	π,π*	2.308 (0.03)	10	2.286 (0.03)	-12	Qx
		20	3	π.π*	2.914 (0.00)	-28	2,949 (0,02)	87	CT
α 93°	Qy	-0.366 (2→2*)	4	π,π^*	3.147 (0.50)	60	3.284 (0.71)	74	Ву
		200	5	π,π^*	3.193 (0.79)	-30	3.124 (0.41)	13	Bx
			6	n,π*	3.280 (0.02)	8	3.192 (0.04)	-4	CT: carbonyl
			7	π,π^*	3.318 (0.00)	56	3.112 (0.14)	-9	CT: vinyl
1 ~ ~*	2 914	0.679(3->1%)	11	π,π^*			3.480 (0.14)	-19	η, CT: C=O
osc	(0.00)	• • • •	8	π,π^*	3.529 (0.35)	99	3.682 (0.01)	-60	η, Pheo
α -28°	CT	1000 1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 100	9	π,π^*	3.690 (0.11)	46	3.697 (0.09)	-30	СТ
			12	π,π^*			3.831 (0.16)	58	N for Chl
		ેટ્રે 😽	10	π,π^*	3.796 (0.43)	-65	3.891 (0.31)	76	N
• Singlet π,π^* excited states except for the carbonyl (n,π^*) CT state 6									
 Dark state (Osc. ≤ 0.1) 3 below B band: invalid four-orbital model (3→1*) Higher density of state for Chlo: additional states 11, 12 									16

		Solvent	induced	spectral s	shifts fo	or Pheo		
	State Energy		/eV	Shift	/meV			
Ν	Nature	Ethanol	experiment	chloroform	ethanol	methanol	water	water ^b
1	Qy	2.087 (0.28)	1.86 (0.28)	-25	-27	-25	-25	-27
2	Q _x	2.290 (0.06)	2.33 (0.04)	-10	-18	-18	-20	-39
3	СТ	2.891 (0.00)		-26	-23	-20	-15	-39
5	B _x	3.075 (0.79)	3.04 (0.95)	-103	-118	-113	-117	-136
4	B _y	3.115 (0.93)	3.14 (0.90)	-34	-32	-27	-29	-36
7	СТ	3.205 (0.04)		-72	-113	-113	-115	-136
8	η	3.489 (0.19)	3.36	-40	-39	-36	-33	-51
6	СТ	3.497 (0.05)		126	216	220	224	735
9	η	3.609 (0.19)		-56	-81	-80	-81	-117
10	N	3.720 (0.46)	3.81	-58	-76	-75	-79	-129
PC	M mode	del for solvents ^b Additional H-bonding to ring V carbonyl						

• Dark state 3 between B and Q bands.

• Most states are red-shifted (minus signed).

• The *Bx* band is red-shifted more than the Q bands (1 and 2).

• (n,π^*) CT state 6: blue-shifted, enhanced by hydrogen bonding

17

State		Energy /eV		Shift /meV				
Ν	Nature	MeOH ^b	experiment	MeOH	MeOH ^a	MeOH ^b	water	water ^b
1	Qy	2.050 (0.35)	1.88 (0.23)	-47	-51	-56	-50	-60
2	Q _x	2.167 (0.08)	2.21 (0.03)	-52	-88	-118	-97	-118
3	СТ	2.854 (0.01)		-72	-72	-95	-72	-88
5	B _x	2.973 (0.44)	2.97 (1.36)	-109	-133	-150	-130	-153
7	СТ	3.005 (0.04)		-60	-85	-107	-72	-108
4	By	3.128 (0.74)	3.13 (0.85)	-102	-141	-156	-144	-168
6	СТ	3.483 (0.01)		325	326	291	279	339
9	η	3.528 (0.30)	3.37	-100	-128	-169	-118	-210
10	Ν	3.630 (0.32)	3.84	-129	-185	-266	-179	-265
12	Ν	3.692 (0.28)		-35	-48	-139	-37	-142
8	СТ	3.796 (0.15)		-23	-37	114	-25	103
11	СТ	3.896 (0.07)		-30	-10	415	-9	435
PCM for solvents ^a Solvent-Mg coordination. ^b H-bonding to ring V carbonyl. • Again, mostly red-shifted (minus signed), $B > Q$, blue-shifted (n,π^*) state 6								

• Carbonyl (π,π^*) partial CT state 11 is blue-shifted by H-bonding.

Acknowledgement

- Financial supports: DFG (MA 1356-10/1), SFB450
- Collaboration: Hui Zhu, Volkhard May, Reinhard Schinke

Thanks for your attention!

21

TDDFT

(b) Casida equation: linear response of ground state electron density

 $\delta \rho(\mathbf{r},t) \Rightarrow \overline{\alpha}(\omega) = \sum_{I} \frac{f_{I}}{\omega_{I}^{2} - \omega^{2}} \quad f_{I} : \text{oscillator strengths}$

In practice, $\sum_{q'} \Omega_{qq'} (\omega_I^2) a_{q'} = \omega_I^2 a_q$ with $\Omega_{qq'} = \omega_q^2 \delta_{qq'} + 2\sqrt{\omega_q \omega_{q'}} \langle q | f_{HXC}(\omega) | q' \rangle$

Index q: singly occupied $\phi_i \rightarrow$ unoccupied ϕ_a transition

$$\left\langle q \middle| f_{HXC} \middle| q' \right\rangle = \iint \phi_i^*(\mathbf{r}) \phi_a(\mathbf{r}) \left[\frac{1}{|\mathbf{r} - \mathbf{r'}|} + \frac{\delta^2 E_{XC}[\rho]}{\delta \rho(\mathbf{r}) \delta \rho(\mathbf{r'})} \right] \phi_j(\mathbf{r'}) \phi_b^*(\mathbf{r'}) dr dr'$$

Hartree exchange-correlation kernel

25