Optimal Control Theory

Applications to Polyatomic Systems

Volkhard May Institute of Physics Humboldt-University at Berlin

Contents of the Talk

(1) the Optimal Control Theory - some extensions

(2) laser pulse control using non-resonant multi-photon transitions

(3) direct optimization of a probe-pulse absorption

(4) accelartion of internal conversion in pyrazine

(5) excitation energy localization in chromophore complexes

Optimal Control Theory Control functional

$$J[\mathbf{E}_c] = \mathcal{O}[\mathbf{E}_c] - \lambda (rac{1}{2} \int\limits_{t_0}^{t_f} dt \; \mathbf{E}_c^2(t) - I_0)$$

Functional equation determining the optimal pulse

$$\mathbf{E}_{c}(t) = \lambda rac{\delta \mathcal{O}[\mathbf{E}_{c}]}{\delta \mathbf{E}_{c}(t)}$$

standard scheme of OCT with a target operator

$$\mathcal{O}[\mathbf{E}_c] = \langle \Psi(t; \mathbf{E}_c) | \hat{O} | \Psi(t; \mathbf{E}_c) \rangle$$

non-resonat multi-photon transitions, MCTDH

OCT for open system dynamics

$$\mathcal{O}[\mathbf{E}_c] = \operatorname{tr}\{\hat{
ho}(t;\mathbf{E}_c)\hat{O}\}$$

excitation energy localization in chromophore complexes (control of exciton dynamics)

OCT with a target operator distributed in time and parameter space

direct optimization of transient probe pulse absoprtion in a pump probe scheme

$$\mathcal{O}[\mathbf{E}_c] = \int_{t_0}^{\infty} dt \int dp \ \langle \Psi(t;p) | \hat{O}(t;p) | \Psi(t;p)
angle$$

Optimal Control Theory for Non-Resonant Multi-Photon Transitions

$$\mathcal{O}[\mathbf{E}_c] = \langle \Psi(t; \mathbf{E}_c) | \hat{O} | \Psi(t; \mathbf{E}_c) \rangle$$

Fs-Laser Pulse Induced Ionization Versus Dissociation of an Organometallic Compound

cyclopentadienyl manganese tricarbonyl

C. Daniel et al., Science, 299, 536 (2003)

5-photon transition and the optimal pulse to form the parent ion

Removal of the Off-Resonant States

$$K_{\text{field}}(t,\bar{t}) = \mathbf{E}(t) \cdot \sum_{a,b} \mathbf{D}_{ab}(t,\bar{t};\mathbf{E}) |\varphi_a\rangle \langle \varphi_b| \cdot \mathbf{E}(\bar{t}) \qquad \text{integral kernel}$$

Non-Resonant Two-Photon Transitions

The RWA and the SVA

Coupled Schrödinger-equations for the vibrational wave functions

$$\begin{split} i\hbar \frac{\partial}{\partial t} |\chi_g(0;t)\rangle &= (H_g - \frac{1}{2} |E(t)|^2 d_{gg}^{(\mathrm{II})}) |\chi_g(0;t)\rangle - \frac{1}{4} E^{*2}(t) d_{ge}^{(\mathrm{II})} |\chi_e(2;t)\rangle \\ i\hbar \frac{\partial}{\partial t} |\chi_e(2;t)\rangle &= (H_e - 2\hbar\omega_0 - \frac{1}{2} |E(t)|^2 d_{ee}^{(\mathrm{II})}) |\chi_e(2;t)\rangle - \frac{1}{4} E^2(t) d_{eg}^{(\mathrm{II})} |\chi_g(0;t)\rangle \end{split}$$

Control Functional

$$J(t_f; E, E^*) = |\langle \chi_e^{(\text{tar})} | \chi_e(t_f) \rangle|^2 - \frac{\lambda}{4} \int_{t_0}^{t_f} dt |E(t)|^4$$

D. Ambrosek, M. Oppel, L. Gonzalez and V. M. opt.comm. (special issue, submitted)

Direct Optimization of a Probe-Pulse Transient Absorption

$$\mathcal{O}[\mathbf{E}_c] = \int\limits_{t_0}^{\infty} dt \; \int dp \; \langle \Psi(t;p) | \hat{O}(t;p) | \Psi(t;p)
angle$$

Three level schemefor Nak1'

- ¹ ¹⁺-ground-state
- 2¹ ¹⁺-first-excited states
- 3¹ ⁺-higher excited state

probe pulse transient absortion signal

$$S_{
m pr} = -\int dt \; rac{\partial {f E}_{
m pr}(t)}{\partial t} {f P}_{
m pr}(t;{f E}_{
m c})$$

$$\begin{split} \mathbf{P}_{\mathrm{pr}}(t) &= n_{\mathrm{mol}} \langle \Psi(t; \mathbf{E}_{\mathrm{c}}, \mathbf{E}_{\mathrm{pr}}) | \, \hat{\mu} \, | \Psi(t; \mathbf{E}_{\mathrm{c}}, \mathbf{E}_{\mathrm{pr}}) \rangle \\ &- n_{\mathrm{mol}} \langle \Psi(t; \mathbf{E}_{\mathrm{c}}) | \, \hat{\mu} \, | \Psi(t; \mathbf{E}_{\mathrm{c}}) \rangle \end{split}$$

probe pulse polarization

Optimized Probe Pulse Transient Absorption Signal versus Probe Pulse Length

 -> control pulse acts up to 1.5 ps
 -> probe pulse is centered at 1.6 ps

A. Kaiser, and V. M., JCP 121, 2528 (2004), CPL 405, 339 (2005), CP (2005)

Laser Pulse Control of Vibrational Dynamics in Pyrazine

$$\mathcal{O}[\mathbf{E}_c] = \langle \Psi(t; \mathbf{E}_c) | \hat{O} | \Psi(t; \mathbf{E}_c) \rangle$$

plus Multi Configuration Time-Dependent Hartree Method

4-Mode Model of Pyrazine (vibronic coupling model)

Worth, Meyer, and Cederbaum, JCP 109, 3518 (1998)

tuning modes

coupling mode

ring stretching ring bending

out of plane

Optimization of the overall S₁-population

Reduced probability distribution of the four modes

 $P_{S_1}(Q_j, t) = \int dQ' |\chi_{S_1}(Q_1, Q_{6a}, Q_{9a}, Q_{10a}, t)|^2$

Excitation Energy Localization in a Pigment Protein Complex

$$\mathcal{O}[\mathbf{E}_c] = \mathrm{tr}\{\hat{
ho}(t;\mathbf{E}_c)\hat{O}\}$$

$$\mathcal{O}[\mathbf{E}_c] = \int_{t_0}^{\infty} dt \int dp \, \langle \Psi(t;p) | \hat{O}(t;p) | \Psi(t;p) \rangle$$

Excitation Energy Localization via the Formation of Excitonic Wavepackets

may become possible!

The monomeric FMO-complex

- -> two-exciton states
- -> excitation energy disspation
- -> structural and energetic disorder
- -> control using circular polarized laser pulses

Multiexciton Density Matrix

Laser Pulse Excitation Energy Localization in the FMO-Complex

B. Brüggemann, and V. M., JPC B 108, 10529 (2004)

Excitation Energy Localization at Chromophore m=7

in dependence on

- the control pulse length
- temperture

including two-exciton states
 at a temperature of 4 K

Linear versus circular polarization of the control pulse

- -> 10 randomly oriented complexes
- -> energetic disorder of 100 cm⁻¹
- -> 4 K
- -> neglect of two-exciton levels

Acknowledgment

David Ambrosek (Berlin) Ben Brüggemann (Lund) **Andreas Kaiser (Berlin)** Hans-Dieter Meyer (Heidelberg) Luxia Wang (Berlin) **DFG (Sfb 450)**

TABLE I: The yield Q, the renormalized yield q, the maximum $E_{\rm max}$ of the field–strength (in GV/m) and the related intensity $I_{\rm max}$ (in GW/cm²) for different used penalty factors λ (in 10¹² fs (GV/m)⁴) of the described control scheme

\mathcal{Q}	q	E_{\max}	I_{\max}	λ
0.68	0.82	58.1	3.02	3
0.29	0.74	42.2	2.19	12
0.0049	0.72	14.7	0.76	19
0.0009	0.72	9.6	0.50	20

Control yield of simple wave packet formation

