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Abstract

Nonadiabatic two-electron transfer (TET) mediated by a linear molecular bridge is studied theoretically. Special attention is put

on the case of a irregular distribution of bridge site energies as well as on the inter-site Coulomb interaction. Based on the unified

description of electron transfer reactions [J. Chem. Phys. 115 (2001) 7107] a closed set of kinetic equations describing the TET

process is derived. A reduction of this set to a single exponential donor–acceptor (D–A) TET is performed together with a derivation

of an overall D–A TET rate. The latter contains a contribution of the stepwise as well as of the concerted route of D–A TET. The

stepwise contribution is determined by two single-electron steps each of them associated with a sequential and a superexchange

pathway. A two-electron unistep superexchange transition between the D and A forms the concerted contribution to the overall rate.

Both contributions are analyzed in their dependency on the bridge length. The irregular distribution of the bridge site energies as

well as the influence of the Coulomb interaction facilitates the D–A TET via a modification of the stepwise and the concerted part of

the overall rate. At low temperatures and for short bridges with a single or two units the concerted contribution exceeds the stepwise

contribution. If the bridge contains more than two units, the stepwise contribution dominates the overall rate.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Distant electron transfer (ET) mediated by a molec-
ular bridge (B) is one of the basic processes responsible

for oxidation–reduction reactions in chemical and bio-

logical systems (see, e.g., [1–12]). Among the various

types of bridge-assisted ET reactions, the donor–accep-

tor (D–A) single-electron transfer (SET) process repre-

sents the most basic type. D–A SET was the subject of

intensive theoretical studies during recent years pro-

moted by experimental findings on the distant depen-
dence of ET reactions through polypeptides [13] and

DNA strands [14]. In particular, results based on a

unified description of nonadiabatic SET [15–18] (see

also [19–21]) allowed to derive an analytic expression for
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the bridge-length dependence of the overall D–A SET

rate. Conditions could be also derived at which the rate

reduces to a sum of contributions related to the multi-
step sequential (hopping) and the unistep superexchange

(coherent) transfer [15].

The transfer process becomes more involved if it

proceeds as a bridge-assisted multi-electron reaction. So

far such types of reactions have been only studied for the

the case of a nonadiabatic D–A two-electron transfer

(TET) mediated by a regular molecular bridge [22–24].

Particularly, it could be demonstrated that the D–A
TET proceeds through the bridge B � B1B2 � � �Bm � � �BN

(Bm denotes the mth unit of the bridge) along stepwise

and concerted routes. The stepwise route is originated

by single-electron hopping transitions between neigh-

boring sites of the DBA system. This type of transition

starts from the reactant state D��BA with the two

electrons at the D. It reaches the intermediate state of

the TET reaction D�BA� � D�B1B2 � � �BNA
� via
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single-electron hoppings along the bridging states of type

D�B�A (this notation abbreviates the manifold of states

D�B�
1 B2 � � �BNA, D�B1B

�
2 � � �BNA; . . . and D�B1B2 � � �

B�
NA). The second part of the process starts from the

intermediate state D�BA� and reaches the product state
DBA� via single-electron hoppings along the bridging

state, DB�A� (which read in detail DB�
1 B2 � � �BNA

�,
DB1B

�
2 � � �BNA

�; . . . and DB1B2 � � �B�
NA

�). Thus, the

reactant state D��BA and the product state DBA�� of

the TET reaction are related one to another by the in-

termediate state D�BA�. The formation of this state is of

fundamental importance for the TET (as already noted

for TET reactions which proceed in the absence of a
bridge [25]). In addition to the introduced states one

expects some contributions from doubly reduced bridge

states. It has been discussed in detail in [23] under what

conditions these contributions are of minor importance.

In contrast to the stepwise route the concerted TET

route follows from a direct unistep transition between

the reactant and the product state (cf. [23]). This unistep

transition is originated by a specific two-electron su-
perexchange coupling between the D and the A via the

above-mentioned types of bridging states D�B�A and

DB�A�, as well as the intermediate state D�BA�.
Moreover, an analytic dependence of the overall D–A

TET rate on the number of bridging units could be de-

rived in [23]. Concentrating on the special case of a

regular bridge, different regimes of D–A TET have been

studied.
It is the aim of the present paper to extend the ap-

proach of [22,23] to the more realistic situation of an

irregular bridge. We will consider the influence of an

intra-bridge energetic bias as well as the effect caused by

the Coulombic coupling between the sites of electron

localization within the DBA system. The energetic dif-

ferences between the sites of the bridge may result from

an externally applied electric field. Slight changes of the
chemical structure of the bridge units or of the groups

surrounding the bridge may also cause such differences.

(In the various types of fumarate reductases the redox-

chains of hemes or Fe–S clusters are characterized by a

notable energetic bias [26]). The importance of the

Coulomb interaction for bridge-assisted D–A SET has

been already underlined in [27]. In the case of the bridge-

assisted TET discussed here the Coulomb interaction
leads to different contributions to the total DBA energy

depending on the position of the two transferred elec-

trons in the DBA system. The localization of the

transferred electrons at the D, the A as well as the

various bridge units B1;B2; . . . ;BN changes the site–site

interaction in the DBA system. To clarify the impor-

tance of this inter-site Coulomb interaction for the effi-

ciency of the distant TET is one task of the present
paper.

The paper is organized as follows: In Section 2, the

model is introduced for the description of nonadiabatic
TET through a molecular bridge and the coupled set of

corresponding kinetic equations are given together with

respective rate constants. The reduction of the complete

set of kinetic equations to those describing the direct D–

A TET process is shortly explained in Section 3. An
analytic expression for the overall D–A TET transfer

rate is given as well. Section 4 is devoted to the analysis

of the bridge-length dependence of the stepwise and

concerted contribution to the overall rate. A general

discussion of the mechanisms leading to bridge-assisted

D–A TET and a comparison of the results obtained for

an irregular as well as a regular bridge are presented in

Section 5.
2. Kinetic equations of nonadiabatic bridge-assisted TET

It is a basic property of bridge-assisted nonadiabatic

ET reactions that they proceed against the background

of fast intra-site relaxation processes. If the latter are

characterized by the time-constant srel, then the in-
equality Dt � srel holds, where Dt is the characteristic

time of the ET process. Accordingly, a coarse-grained

description of the ET can be carried out [15,17]. It is

based on the introduction of the total electronic state

populations PM ðtÞ ¼
P

mM
hmMM jqðtÞjMmMi, where qðtÞ is

the density operator of the DBA system and the sum-

mation has been taken with respect to all vibrational

substates mM related to the electronic state jMi.
In the case of bridge-assisted TET under consider-

ation the states jMi refer to all involved electronic

configurations. Those cover the donor state

jDi � jD��B1B2 � � �Bm � � �BNAi, the intermediate state

jIi � jD�B1B2 � � �Bm � � �BNA
�i, and the acceptor state

jAi � jDB1B2 � � �Bm � � �BNA
�i, as well as two types of

singly reduced bridging states jBmi � jD�B1B2 � � �
B�
m � � �BNAi and j~Bmi � jDB1B2 � � �B�

m � � �BNA
�i (m ¼

1; 2; . . . ;N ). Here, D��ðA��Þ and D�ðA�Þ denote the

D(A) site with, respectively, two excess electrons and

one excess electron, while B�
m stands for the mth bridge

unit with one excess electron. Of course the given elec-

tronic states have to be supplemented by those of a

doubly reduced bridge. However, we will restrict our

considerations to bridges which are surrounded by a

nonpolar environment like lipids or nonpolar residues of
a protein. Then, because of the Coulomb repulsion

among the transferred electrons the doubly reduced

bridge states are positioned far above the energy levels

of all other states and can be neglected (for more details

see [23] as well as [28,29], where this effect has been

discussed for molecular wires). Accordingly, we denote

the TET Hamiltonian as HTET ¼ H0 þ V , where the di-

agonal part

H0 ¼
X
M

X
mM

EMmM jMmMihMmM j ð1Þ
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is defined by the electron–vibrational states jMmMi and

the respective energies EMmM (M and mM denote the

electronic and vibrational quantum numbers, respec-

tively). The off-diagonal part of the TET Hamiltonian,

V ¼
X
M ;N

X
mM m0N

MMN hmM jm0N ijMmMihNm0N j ð2Þ

is responsible for electronic transitions between different

states jMmMi and jNm0Ni. It is written by using a Condon-

like approximation (which works well in the case of

bridge-assisted nonadiabatic ET). Accordingly, MMN ¼
hM jV̂trjNi denotes the electronic coupling and hmM jm0N i
gives the vibrational overlap integral. The MMN are
specified by employing a tight-binding model. If one

restricts on a DBA system with the D and the A inter-

connected by a linear bridge one obtains [23]

MDB1
¼ VD1; MI~B1

¼ V 0
D1; MIBN ¼ VAN ;

MA~BN
¼ V 0

AN ; MBmBm�1
¼ M~Bm ~Bm�1

¼ Vmm�1:
ð3Þ

The expressions show that any transition between two

different electronic states jMi and jNi is originated by

SET processes between neighboring sites of electron
1 N2

BRIDGE

D A3 N–1

VD1 (V'D1) VNA (V'NA)V12 V23 VN–1 N

lD aa a lA

Fig. 1. Linear donor–bridge–acceptor (DBA) system. The quantities

lD; a and lA denote the distances between different units. (The single-

electron couplings VD1; VNA; V 0
D1; V

0
NA, and Vmmþ1 are discussed in the

text.)
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Fig. 2. Reduction of multi-exponential TET kinetics to single-exponential D–

DBA electronic states (with rates gm; rm; ~gn;~rn) and unistep transitions (with

electronic states, and scheme (c) represents the D–A TET kinetics with an o
localization in the DBA system with the MMN expressed

by inter-site single-electron coupling matrix elements

Vmm0 (cf. Fig. 1).

Based on the TET Hamiltonian one may derive ki-

netic equations which describe the process of bridge
mediated nonadiabatic TET. Details of the derivation

can be found in [15] for the case of SET, and in [23] for

TET reactions. The coarse-graining procedure results in

the following kinetic equations for the populations of all

involved electronic states jMi
_PMðtÞ ¼ �qMPMðtÞ þ

X
N 6¼M

kNMPN ðtÞ; ð4Þ

where indexes M and N indicate the noted electronic

DBA-states jDi, jBmi, jIi, j~Bmi and jAi. The quantities

qD � gD þ kDI þ kDA; qm � gm þ rm ðm ¼ 1; 2; . . . ;NÞ;
qA � ~rA þ kAI þ kAD; ~qn � ~gn þ ~rn ðn ¼ 1; 2; . . . ;NÞ;
qI � gI þ rI þ kID þ kIA

ð5Þ
are the total escape rates from the respective states. They
are expressed by the rate-constants kMN describing the

transitions from electronic state jMi to another states.

The rate constants of sequential single–electron

transitions between neighboring DBA sites are indicated

in the scheme (a) of Fig. 2 and read gD � kDB1
, gN �

kBN I, gm � kBmBmþ1
, ~gI � kI~B1

, ~gN � k~BNA
, ~gm � k~Bm

~Bmþ1

(and analogously for rj and ~rj). The general form of this

type of rate expressions is given by

kMN ¼ 2p
�h
jMMN j2ðFCÞMN ; ð6Þ

where ðFCÞMN is the Franck–Condon factor for M ! N
transition [1,11,15,30].
I 

KID KIA

DI KAI

 A 
kDA

kAD

D 
kf

kb

A 

(b) (c) 

wo–exponential
kinetics 

Single–exponential
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A TET kinetics. Scheme (a) involves multi-step transitions between the

rates kMN ). The scheme (b) shows the transitions between three basic

verall forward and backward transfer rate.
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Apart from the sequential transitions the kinetic

equation (4) include processes of distant single-electron

(D¢ I and I¢A) and two-electron (D¢A) transitions

with rate expressions

kMN ¼ 2p
�h
jTMN j2ðFCÞMN ; ð7Þ

where the TMN denote the respective superexchange

coupling matrix elements. In the case of the SET pro-

cesses D¢ I and I ¢A the squares of the related su-

perexchange couplings read

jTDIj2 ¼
jMDB1

MB1B2
� � �MBN�1BNMBN I j

2QN
m¼1 DEmDDEmI

ð8Þ

and

jTIAj2 ¼
jMI ~B1

M~B1
~B2
� � �M~BN�1

~BN
M~BNAj

2QN
m¼1 D~EmID~EmA

: ð9Þ

The quantity responsible for the two-electron D¢A

transition takes the following form:

jTDAj2 ¼
jMDB1

MB1B2
� � �MBN�1BNMBN Ij

2QN
m¼1 DEmDDEmADEID

�
jMI ~B1

M~B1
~B2
� � �M~BN�1

~BN
M~BNA

j2QN
m¼1 D~EmDD~EmADEIA

: ð10Þ

Note that we have used the abbreviations DEmDðI;AÞ �
DEBmDðI;AÞ and D~EmDðI;AÞ � D~EBmDðI;AÞ.
3. Overall transfer rate of the D–A TET process

The processes connected with the TET reaction are

described by the 2N þ 3 linear rate equation (4) and are
depicted in scheme (a) of Fig. 2. Every state population

PM (M ¼ D; I;A;B1; . . .BN ; ~B1; . . . ~BN ) has a multi-ex-

ponential time-dependence PM ðtÞ ¼ PMð1Þ þ
P2Nþ2

r¼1

B
ðrÞ
M expð�KrtÞ. The PM ð1Þ are the steady-state popula-

tions and K1;K2; . . . ;K2Nþ2 denote the 2N þ 2 nonzero

transfer rates. Of course, analytical expressions for the

rates Kr can only be derived in particular cases. One of

them is the (direct) D–A TET where the populations of
all bridging states jBmi and j~Bni (m; n ¼ 1; 2; . . . ;N ) as

well as of the intermediate state jIi remain small during

the TET. For such a situation multi-exponential kinetics

are only met for the bridging states and the intermediate

state which all less populated [17,23]. However, the

population of the reactant state jDi and the product

state jAi show a single-exponential time-dependence

(M ¼ D;A, the PM ð0Þ denote the initial populations)

PMðtÞ ¼ PMð1Þ þ ðPMð0Þ � PMð1ÞÞ expð�KTETtÞ: ð11Þ
The resulting TET kinetics described by this two-state

equation are shown in Fig. 2(c). The overall transfer rate

KTET, as demonstrated in [23] is given by the smallest

rate of the set K1;K2; . . . ;K2Nþ2. This fact will be used to
derive an expression for KTET in the general case of an

irregular bridge (in [23] an analytic expression for KTET

has been only derived for the case of a regular bridge).

First let us change to the Laplace transform of the

kinetic equation (4). According to the relation FM ðsÞ ¼R1
0

expð�stÞPM ðtÞdt we obtain a linear set of algebraic

equations

ÂðsÞFðsÞ ¼ C: ð12Þ
The vectors FðsÞ and C are defined by its components

FDðsÞ; F1ðsÞ; . . . ; FAðsÞ and PDð0Þ; P1ð0Þ; . . . ; PAð0Þ, re-

spectively, and ÂðsÞ denotes the rate matrix. The con-

dition detðsÞ ¼ 0, where detðsÞ is the determinant of Â,
determines all 2N þ 3 TET rates. They read K1 ¼ �s1,
K2 ¼ �s2; . . . ;K2Nþ2 ¼ �s2Nþ2 with sr being the roots of

detðsÞ (one root, denoted by s0, is equal to zero). Next

we note that ÂðsÞ depends on s only via its diagonal
elements AMMðsÞ ¼ sþ qM . Therefore, the AMMðsÞ are

dominated by the escape rates qM if jsj � qM . Assuming

that the energetic position of the bridging states as well

as of the intermediate state is above the donor and the

acceptor level, the escape rates q1, qN , ~q1, ~qN and qI are
much larger than qD and qA (see Eq. (5)). As a result, the

smallest nonzero transfer rate K2Nþ2 � KTET strongly

deviates from all other rates. Considering the diagonal
elements AMMðsÞ at s ¼ �KTET we may conclude that

AMMðs ¼ �KTETÞ ’ qM for all bridging states jBmi, j~Bmi
as well as for the intermediate state jIi. Hence, we may

set AMMðsÞ ’ AMMð0Þ, what exactly corresponds to the

‘‘steady-state’’ approximation for finding the popula-

tions (in our case the populations of the bridging states

as well as of the intermediate state). Thus, setting
_PmðtÞ ¼ 0, _P~nðtÞ ¼ 0, _PIðtÞ ¼ 0 and utilizing the initial
condition PMð0Þ ¼ dMD we obtain the solution, Eq. (11)

with PDð0Þ ¼ 1, PA ¼ 0, PDð1Þ ¼ kb=KTET, PAð1Þ ¼
kf=KTET, andKTET ¼ kf þ kb. Note that the forward (kf )
and the backward (kb) component of the D–A TET rate

KTET,

kfðbÞ ¼ kðstepÞfðbÞ þ kðconcÞfðbÞ ; ð13Þ

contain contributions associated with the stepwise and
concerted transition within the whole DBA system. The

stepwise contribution is given by

kðstepÞf ¼ KDIKIA

KID þ KIA

; kðstepÞb ¼ KAIKID

KID þ KIA

: ð14Þ

The rates KMN contain a contribution given by the su-

perexchange mechanism of SET KðsupÞ
MN and by a contri-

bution related to the sequential mechanism KðseqÞ
MN (cf.

scheme (b) in Fig. 2). They read in detail

KDIðIDÞ ¼ KðsupÞ
DIðIDÞ þ KðseqÞ

DIðIDÞ;

KðsupÞ
DI ¼ kDI; KðseqÞ

DI ¼ gDg1 � � � gN=Dð1;NÞ;
KðsupÞ

ID ¼ kID; KðseqÞ
ID ¼ rIrN � � � r1=Dð1;NÞ

ð15Þ

and



Fig. 3. Position of the electronic energy levels EM � EðM ; f0MgÞ of the
DBA system and respective energy gaps in the general case (panel a)

and in the case of a self-exchange D–A TET reaction (panel b).
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KAIðIAÞ ¼ KðsupÞ
AIðIAÞ þ KðseqÞ

AIðIAÞ;

KðsupÞ
AI ¼ kAI; KðseqÞ

AI ¼ ~rA~rN � � �~r1= ~Dð1;NÞ;
KðsupÞ

IA ¼ kIA; KðseqÞ
IA ¼ ~gI~g1 � � � ~gN=~Dð1;NÞ:

ð16Þ

The quantity Dð1;NÞ is the determinant of the tri-

diagonal matrix

D̂ ¼

q1 �r2 0 0 . . . 0

�g1 q2 �r3 0 . . . 0

0 �g2 q3 �r4 . . . 0

..

. ..
. ..

. . .
.

. . . ..
.

0 0 . . . �gN�2 qN�1 �rN
0 0 . . . 0 �gN�1 qN

0
BBBBBBB@

1
CCCCCCCA
:

ð17Þ

Moreover, ~Dð1;NÞ denotes the determinant of the ma-

trix, Eq. (17) with the elements �gm;�rm and qm re-

placed by �~gm;�~rm and ~qm, respectively. The rate

expressions given in Eqs. (15) and (16) essentially sim-
plify for a regular bridge with identical units. If an en-

ergetic bias D ¼ Emþ1 � Em between neighboring bridge

sites is present all forward (and backward) inter-site rate

constants coincide so that

g1 ¼ g2 ¼ � � � ¼ gN�1 ¼ ~g1 ¼ ~g2 ¼ � � � ¼ ~gN�1 � a;

r2 ¼ r3 ¼ � � � ¼ rN ¼ ~r2 ¼ ~r3 ¼ � � � ¼ ~rN � b:

ð18Þ

According to this specification the expressions for the

sequential transfer rates KðseqÞ
DIðIDÞ and KðseqÞ

AIðIAÞ take a sim-

pler form [23]. Furthermore, the contribution stemming

from the concerted TET mechanism and entering Eq.

(13) is defined via a specific unistep two-electron su-

perexchange process between the states jDi and jAi.
This yields

kðconcÞf ¼ kDA; kðconcÞb ¼ kAD ð19Þ

with the rates kDA and kAD given by Eqs. (7) and (10).

The expressions given in Eqs. (11), (13)–(17), and (19)

completely describe nonadiabatic D–A TET reactions

mediated by a bridge of N units. Below we will con-
centrate on the analysis of the bridge-length dependency

of the overall transfer rate KTET in using a simple tight-

binding description of the bridge. In accordance with

this model all interstate couplingsMMN can be expressed

by the inter-site electronic couplings (cf. Eq. (3)). And,

the formulas for the superexchange couplings remain

valid if all energy gaps DEMN in Eqs. (8)–(10) are positive

and satisfy the condition of deep tunneling:

jVD1j; jVNAj; jV 0
D1j; jV 0

NAj; jVmmþ1j � DEID: ð20Þ
[Note that DEmA PDEmD > DEID, DEID PDEIA, and

D~EmD PD~EmA > D~EmI.]
3.1. Bridge-length dependence in the case of regular bridge

We denote the unperturbed energies which corre-

spond to the DBA-states jDi, jAi, jIi, jBmi and j~Bmi by
Eð0Þ
D , Eð0Þ

A , Eð0Þ
I , EB � Eð0Þ

m , and ~EB � ~Eð0Þ
m , respectively. In

a DBA system with a regular bridge the energy gaps

DEMN ¼ DEðregÞ
MN entering the denominators of Eqs. (8)–

(10), can be expressed as DEðregÞ
mD ¼ EB � Eð0Þ

D � DED,

DEðregÞ
mA ¼EB�Eð0Þ

A �DEA, DEðregÞ
ID ¼Eð0Þ

I �Eð0Þ
D ¼DED�

DEI;ðDEI¼EB�Eð0Þ
I Þ, D~EðregÞ

mD ¼ ~EB�Eð0Þ
D �D~ED, D~E

ðregÞ
mA ¼

~EB�Eð0Þ
A �D~EA, DE

ðregÞ
IA ¼Eð0Þ

I �Eð0Þ
A ¼DEA�DEI, DE

ðregÞ
mI ¼

EB�Eð0Þ
I �DEI, and D~EðregÞ

mI ¼~EB� Eð0Þ
I �D~EI (cf. Fig. 3).

Moreover, we set Vmmþ1�VB. In line with Eqs. (6), (15),

(16), and (19), then, we may write (note that symbol reg

stands for a regular bridge)

Kðsup�regÞ
DIðIDÞ ¼ 2p

�h
jT ðregÞ

DI j2ðFCÞðregÞDIðIDÞ;

Kðsup�regÞ
IAðAIÞ ¼ 2p

�h
jT ðregÞ

IA j2ðFCÞðregÞIAðAIÞ

ð21Þ

and

kðconc�regÞ
fðbÞ ¼ 2p

�h
jT ðregÞ

DA j2ðFCÞðregÞDAðADÞ; ð22Þ

where the squares of superexchange couplings read

jT ðregÞ
DIðIAÞðNÞj2 ¼ jT ð0Þ

DIðIAÞj
2
e�f1ð2ÞðN�1Þ; ð23Þ

jT ðregÞ
DA ðNÞj2 ¼ jT ð0Þ

DAj
2
e�fðN�1Þ: ð24Þ
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Concrete expressions for jT ð0Þ
DI j

2
, jT ð0Þ

IA j2 and jT ð0Þ
DAj

2
as well

as the decay parameters f1, f2 and f can be found in [23,

Eqs. (63)–(71)].

It follows from Eqs. (21) and (23) that the superex-

change components of the SET rates KDIðIDÞ and KIAðAIÞ,
Eqs. (15) and (16) which specify the stepwise contribu-

tion to the overall D–A TET rate KTET, show a strong

exponential decrease with an increasing number of

bridge units. Analogously, an exponential decay occurs

for the concerted contribution which is originated by the

specific two-exponential superexchange coupling T ðregÞ
DA

ðNÞ, Eq. (24).
To derive the bridge-length dependence of the se-

quential components of KDIðIDÞ and KIAðAIÞ one has to

take into consideration the condition (18) as well as the

fact that for a regular unbiased bridge the forward and

backward intra-bridge rate constants coincide (a ¼ b).
Accordingly, we obtain

Kðseq�regÞ
DIðIDÞ ¼ kð0seqÞDIðIDÞ=½1þ n1ðN � 1Þ�;

Kðseq�regÞ
IAðAIÞ ¼ kð0seqÞIAðAIÞ=½1þ n2ðN � 1Þ�;

ð25Þ

where

kð0seqÞDI ¼ gDgN=ðgN þ r1Þ; kð0seqÞID ¼ rIr1=ðgN þ r1Þ; ð26Þ

kð0seqÞAI ¼ ~rA~r1=ð~gN þ ~r1Þ; kð0seqÞIA ¼ ~gI~gN=ð~gN þ ~r1Þ ð27Þ

are bridge-length independent quantities. The change of

the sequential rates with a change of the bridge length is

determined by the decay parameters

n1 ¼
r1gN

aðgN þ r1Þ
; n2 ¼

~r1~gN
að~gN þ ~r1Þ

: ð28Þ
3.2. Influence of energetic perturbations on the D–A TET

transfer rates

The derivation of transfer rates for the case of regular

bridge as given in the previous section has been based on

the supposition that the Franck–Condon factors are

independent on the distance between different units of

the DBA system. Such an assumption is justified by

experimental data on DBA systems with a regular

bridge which confirm an exponential dependence of the
(single-electron) superexchange rate (see the discussion

on SET through proline chains in [13,17]). However,

there exist systems where an exponential dependence of

the superexchange contribution to the overall D–A SET

rate has not been observed (cf. the SET through DNA

strands [14,16,31]). The absence of such an exponential

dependence in the case of SET through a regular bridge

may be related to the dependence of the reorganization
energy on the D–A distance as well as to the Coulomb

interaction between different sites (different redox-cen-

ters) [27].
It is the aim of the following discussion to account for

the latter effect in the case of TET. Due to the presence

of two transferred electrons we expect a distinct influ-

ence of the inter-site Coulomb interaction as well as of

an energetic bias. Below we will consider how the ex-
ponential bridge-length dependence of superexchange

rates and the hyperbolic bridge-length dependence of

sequential rates changes. In order to discuss the specific

influence of an energetic bias as well as of the Coulomb

interaction we assume a weak dependence of the reor-

ganization energies on the bridge length.

Let �M be the change of the electronic energy

Eð0Þ
M � Eð0Þ

M0M
caused by an inter-site Coulomb interaction

as well as by the presence of an energetic bias. Then,

EM ¼ Eð0Þ
M þ �M . A concrete expressions for �M ¼ �

ðbiasÞ
M þ

�
ðCoulÞ
M are given in Appendix A. They cover the contri-

butions �
ðbiasÞ
M originated by an externally induced ener-

getic bias as well as the expressions �
ðCoulÞ
M accounting for

the inter-site Coulomb interaction. The presence of �M
changes the energy gaps DEðregÞ

MN to

DEMN ¼ DEðregÞ
MN þ D�MN : ð29Þ

Noting the expressions Eqs. (A.1)–(A.3), (A.13)–(A.15)

for �
ðbiasÞ
M and �

ðCoulÞ
M , respectively we may write

DEmD ¼ DED � ðm� 1ÞDþ U ð2Þ
DA=rDA � U ð1Þ

B =rDm

� U ð2Þ
B =rAm; ð30Þ

D~EmD ¼ D~ED � ðm� 1ÞD� ðN � 1ÞDþ U ð2Þ
DA=rDA

� U ð2Þ
B =rDm � U ð1Þ

B rAm; ð31Þ

DEmA ¼ DEA � ðm� 1ÞDþ 2ðN � 1ÞDþ U ð2Þ
DA=rDA

� U ð1Þ
B =rDm � U ð2Þ

B =rAm; ð32Þ

D~EmA ¼ D~EA þ ðN � mÞDþ U ð2Þ
DA=rDA � U ð2Þ

B =rDm

� U ð1Þ
B =rAm; ð33Þ

DEmI ¼ DEI þ ðN � mÞDþ ðU ð2Þ
DA � U ð1Þ

DAÞ=rDA

� U ð1Þ
B =rDm � U ð2Þ

B =rAm; ð34Þ

D~EmI ¼ D~EI � ðm� 1ÞDþ ðU ð2Þ
DA � U ð1Þ

DAÞ=rDA

� U ð2Þ
B =rDm � U ð1Þ

B =rAm ð35Þ

and

DEID ¼ ðDED � DEIÞ � ðN � 1ÞDþ U ð1Þ
DA=rDA; ð36Þ

DEIA ¼ ðDEA � DEIÞ þ ðN � 1ÞDþ U ð1Þ
DA=rDA; ð37Þ

DEDA ¼ DE þ 2ðN � 1ÞD ðDE � DED � DEAÞ: ð38Þ
Eqs. (30)–(38) demonstrate that the energy bias and the

influence of the Coulomb interaction leads to an de-

pendence of the energy gaps on the number of bridge
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units N , thus modifying the bridge-length dependence of

the superexchange couplings, Eqs. (8)–(10). Moreover,

the driving forces (36)–(38) cause an additional N -

dependence of the Frank–Condon factors in the super-

exchange rate constants, Eq. (7). Hence, a modification
of the bride-length dependence of the superexchange

rate results from a change of the superexchange cou-

plings as well as from a change of the Franck–Condon

factors. Some numerical illustrations of this conclusion

will be given in the next section. Here, we will derive an

analytical expression which demonstrates a deviation

from the exponential bridge-length dependence as found

for the case of a regular bridge (cf. Eqs. (23) and (24)).
We consider the case where D�MN ¼ �M � �N is small

compared to the respective energy gaps DEðregÞ
MN . Then, on

the base of results derived in Appendix B (cf. Eqs. (B.3),

(B.7) and (B.8)) we may represent the superexchange

rates, Eq. (7) in the following form:

kDIðIAÞ 	
2p
�h
jT ðregÞ

DIðIAÞðNÞj2e�H1ð2ÞðNÞðFCÞDIðIAÞ; ð39Þ

kDA 	 2p
�h
jT ðregÞ

DA ðNÞj2e�HðNÞðFCÞDA ð40Þ

with jT ðregÞ
DI ðNÞj2, jT ðregÞ

IA ðNÞj2 and jT ðregÞ
DA ðNÞj2 given in Eqs.

(23) and (24), respectively. The correction factors are

defined by Eqs. (B.4) and (B.9).

The discussed bridge irregularities modify the se-

quential transfer rates in much more complicated way

than the superexchange rates. If, however, only an en-

ergetic bias changes the energies of a regular bridge Eq.

(25) can be transformed to

KðseqÞ
DIðIAÞ ¼

kð0seqÞDIðIAÞ

1þ n1ð2Þð1� cN�1Þ=ð1� cÞ ;

Kðseq�regÞ
IDðAIÞ ¼

kð0seqÞIDðAIÞc
N�1

1þ n1ð2Þð1� cN�1Þ=ð1� cÞ :

ð41Þ

Now, the sequential decay parameters read

n1 ¼
r1ðgN � að1� cÞÞ

aðgN þ r1Þ
; n2 ¼

~r1ð~gN � að1� cÞÞ
að~gN þ ~r1Þ

; ð42Þ

where we introduced c � b=a ¼ exp½�D=kBT � (kB and T
are the Boltzmann constant and temperature, respec-
tively).
4. Discussion of the results

According to Eq. (13), we may rewrite the overall

transfer rate as KTET ¼ KðstepÞ þ KðconcÞ. Noting

kb ¼ kf expð�DEDA=kBT Þ one obtains

KðstepðconcÞÞ ¼ 1

�
þ exp

�
� DEDA

kBT

��
kðstepðconcÞÞf : ð43Þ
Moreover, it follows from Eq. (43) that the bridge-

length dependence of KTET is located once in the driving

force of the D–A TET reaction, DEDA (cf. Eq. (38)).

Furthermore, this dependence enters the forward rate

kðstepÞf (via the single-electron stepwise transfer rates KDI

and KIA, Eqs. (15) and (16)) as well as the rate kðconcÞf ,

Eq. (19).

To let become the dependence on the bridge length

more obvious we specify the Franck–Condon factors for

the site-to-site transition rates eqs. (6) and (7) in using

the Song–Marcus model [32,33]. The model supposes a

strong coupling of the electronic transition M ! N to a

single (intra-site) vibration with frequency xMN > 0
while the coupling to the surrounding bath is charac-

terized by the reorganization energy kMN . In this case,

one obtains Jortner’s expression [34] of the Franck–

Condon factors which reads as ðFCÞMN ¼ UMN=�hxMN ,

where

UMN ¼ exp

�
� SMN coth

�hxMN

kBT

�
1þ nðxMN Þ
nðxMN Þ

� �mMN =2

� IjmMN j 2SMN ½nðxMN Þð1
�

þ nðxMN ÞÞ�1=2
�
: ð44Þ

This formula contains the modified Bessel function ImðzÞ,
the Bose distribution function nðxÞ ¼ ½expð�hx=kBT Þ
�1��1

, and we have set SMN � kMN=�hxMN , mMN � DEMN=
�hxMN . Now, we can specify all forward single-electron

sequential rate constants:

gD ¼ 2p

�h2
jVD1j2

xD1

UD1; gN ¼ 2p

�h2
jVNAj2

xNI
UNI ; ð45Þ

~gI ¼
2p

�h2
jV 0

D1j
2

xI1

UI1; ~gN ¼ 2p

�h2
jV 0

NAj
2

xNA

UI1; ð46Þ

gm ¼ 2p

�h2
jVBj2

xB

Ummþ1; ~gm ¼ 2p

�h2
jVBj2

xB

U~m~mþ~1: ð47Þ

Analogously, the forward single-electron and two-elec-

tron superexchange transfer rates read

kIDðIAÞ ¼
2p

�h2
jTDIðIAÞj2

xIDðIAÞ
UIDðIAÞ; kDA ¼ 2p

�h2
jTDAj2

xDA

UDA:

ð48Þ
Below we will discuss the results obtained so far in an-

alyzing the particular case of a self-exchange D–A TET

reaction. In order to relate the present computations to
our earlier ones of [23,24] the following calculations are

carried out with parameters similar to those of [23,24].

(Note that we took into account the fact that the reor-

ganization energies of TET reactions are, as a rule,

larger than those of SET reactions; for instance, in the

case of TET reactions in solvents the reorganization

energies may exceed those of SET processes by 1–1.5 eV

[35,36].) There will be only a single deviation from the
parameters used in [23,24]. To be able to compare the
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stepwise and the concerted TET mechanism also at

low-temperatures the vibrational frequencies have been

taken somewhat larger than in [23,24].

Fig. 4 shows that the contribution to KTET caused by

the stepwise mechanism exceeds the concerted one if
room temperatures are considered. However, for the

same energetic parameters (specifying the rates (45)–

(48)) the contribution originated by the concerted

mechanism increases if the temperature decreases to 150

K (compare Figs. 4 and 5). The concerted contribution

becomes comparable to the stepwise contribution for a

single bridge unit (N ¼ 1) at T ¼ 150 K as well as for

two bridge units (N ¼ 2) at T ¼ 100 K. It exceeds the
stepwise contribution at N ¼ 1 and T ¼ 100 K (compare

Figs. 5(a) and (b)). Here, we have to note that in line

with the Marcus-theory [37] the reorganization energies

kDI, kIA and kDA can depend on the D–A distance.

Therefore, the transfer rates for the case N ¼ 1 does not

follow automatically from the above derived rate ex-

pressions for arbitrary N . In particular, a direct TET

between the D and the A would become possible which
can even transform a nonadiabatic reaction to an adi-

abatic one. So, the case N ¼ 1 requires more involved

consideration if a concrete DBA system is considered.

Here, however, we would like to consider such DBA

systems where the nonadiabatic character of the reaction

is guaranteed by small inter-site couplings. Then, the

derived kinetic equations and the corresponding rate

constants can be considered to be correct, at least for
N > 1.

The calculations performed with the chosen set of

parameters indicate that KIA � KID. Therefore, in line
Fig. 4. Overall D–A TET rate of a DBA system with a regular bridge

and for conditions where the stepwise component exceeds the con-

certed one at any bridge length. The calculations are based on Eqs. (6)–

(10), (13)–(17), (43)–(48) for the case of self-exchange TET reaction.

The following parameters have been taken: DED ¼ DEA ¼ D~ED ¼
D~EA ¼ 0.35 eV, DEI ¼ D~EI ¼ 0.25 eV, DE¼ 0, k1D ¼ kNI ¼ kDI ¼ kI1 ¼
kNA ¼ kIA ¼ 0.6 eV, kDA ¼ 0.8 eV, kmm�1 � kB ¼ 0.3 eV; xMN ¼ x0 ¼
800 cm�1; VD1 ¼ VNA ¼ V 0

D1 ¼ V 0
NA ¼0.02 eV, VB ¼0.04 eV.

lower temperature. The stepwise component of the overall transfer rate

is caused by a single-electron sequential as well as a single-electron

superexchange mechanism (panel (a)). If temperature is decreased the

superexchange part in the stepwise transfer rate dominates the se-

quential part. Besides, in the case of a short bridge (N ¼ 1,2) the

concerted mechanism originated by a two-electron superexchange

process between the D and the A, strongly contributes to the common

rate KTET (panel (b)).
with Eqs. (14) and (15) one gets kðstepÞf 	 KðseqÞ
DI þ KðsupÞ

DI .

Fig. 5(a) shows that at T ¼ 150 K just a single-electron

superexchange component, KðsupÞ
DI , forms the stepwise

D–A TET route when the number of units of a regular

bridge does not exceed N ¼ 4. At T ¼ 100 K, the same
component dominates up to N ¼ 6 (cf. Fig. 5(b)). Note

again that the stepwise transfer rate, kðstepÞf , Eq. (14) is

defined exclusively by single-electron transitions which
are responsible for the formation of the superexchange

and sequential component of the common transfer rate

kðstepÞf .

The rise of the concerted contribution with a decrease

of temperature is caused by the specific origin of the

concerted mechanism. It is based on the two-electron

superexchange process between the D and the A when

the intermediate state D�BA� acts as a virtual state like



Fig. 6. Overall D–A TET rate of a DBA system with the regular ar-

rangement of the bridge energies disturbed by an bridge-internal en-

ergetic bias (panel (a)), and by the presence of the Coulomb interaction

between the centers of electron localization (panel (b)). The simulta-

neous presence of both mechanisms is considered in panel (c). The

calculations have been done with the same parameters as in Fig. 4

except the temperature and the quantities D¼ 0.01 eV and Q¼ 0.07 eV.
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the bridging states. Therefore, the concerted mechanism

works even at zero temperature while the efficiency of

the stepwise mechanism is strongly limited by the need

for a thermal activation of the intermediate state.

Fig. 6 demonstrates the influence of an inter-site en-
ergetic bias as well as of the Coulomb interaction on the

efficiency of low-temperature D–A TET. It is seen from

a comparison of Figs. 6(a) and 5(b) that the efficiency of

the D–A TET increases if an energetic bias D is present

within the bridge. We underline two peculiarities in the

dependency of KTET on N . There appears a slight devi-

ation from the exponential law for the concerted as well

as the stepwise components of the D–A TET rate.
Moreover, a notable alteration of the single-electron

superexchange decay constant can be observed. The first

peculiarity can be explained by the weak dependence of

the corresponding Franck–Condon factor on the bridge

length. The second one is related to the driving forces of

single-electron and two-electron reactions, DEID and

DEDA. Actually, as far as at a given set of parameters the

stepwise component of the overall transfer rate is mainly
defined by kðstepÞf 	 KðsupÞ

DI one derives KðstepÞ 	 exp

ð�DEID=kBT ÞkID. Bearing in mind the fact that

kID 
 jTDIj2 while DEID contains the term �ðN � 1ÞD
(cf. Eq. (36)) one concludes that KðstepÞ 
 exp

f½ðD=kBT � f1ÞðN � 1Þ� � fDINðN � 1Þg. Here, f1 speci-

fies a rate drop for the case of regular bridge (cf. Eq.

(23)) while fDI � ð1=2Þ½ðD=DEIÞ � ðD=DEÞ� > 0 gives a

correction to this drop. The estimations show that
ðD=kBT Þ � fDAN . Therefore,

KðstepÞ 	 KðstepÞ
0 e�fðeffÞ

1
ðN�1Þ; ð49Þ

where the effective decay parameter reads fðeffÞ1 ¼
f1 � D=kBT . As far as fðeffÞ1 < f1 one observes a some-

what weaker decrease of KðstepÞ compared to the case of a
DBA system with a regular bridge. At the same time,

following from the property DED ¼ DEA ¼ D~ED ¼ D~EA

valid for a self-exchange D–A TET reaction (compare

the schemes (a) and (b) of Fig. 3), one can see from Eq.

(B.9) that HðNÞ ¼ 0, and thus the bridge energetic bias

D does not alternate the two-electron superexchange

coupling TDA, Eq. (40). Therefore, the bridge-length

dependence follows from the expression

KðconcÞ 	 KðconcÞ
0 e�fðN�1Þ; ð50Þ

which has the same form as that derived for a DBA

system with a regular bridge.

A slightly different situation occurs if the Coulomb

interaction between the centers of electron localization
in the DBA system is included into the consideration.

This interaction results in different energetic shifts of the

DBA system (cf. Eqs. (A.13)–(A.15)), and thus creates

an energetic irregularity of the bridge. A comparison of

Fig. 6(b) with Fig. 5(b) leads to the conclusion that the
Coulomb interaction modifies the energy gaps in

Eqs. (8)–(10). It results an alteration of the stepwise and

concerted components of the overall D–A TET rate. In
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particular, the Coulomb interaction leads to a noticeable

deviation of the stepwise component from the expo-

nential law. At N 6 2 the rate KðstepÞ remains smaller for

an irregular bridge than for a regular. In contrast, at

N > 2 the rate becomes larger for an irregular bridge.
This fact can directly be deduced from the expression

KðstepÞ 	 ~KðstepÞ
0 e�f1ðN�1Þe�H1ðNÞ ð51Þ

which is obtained from Eq. (39) with KðstepÞ 	
expð�DEID=kBT ÞkID. Just the factor H1ðNÞ given by Eq.

(B.4) (for D ¼ 0) mainly modifies the bridge-length be-
havior of KðstepÞ. [The difference between ~KðstepÞ

0 , Eq. (51)

and KðstepÞ
0 , Eq. (49) is caused by a different magnitude of

the driving force DEDI at Q ¼ 0 and Q 6¼ 0.]

Next let us consider the concerted contribution to the

total rate. It is given by Eq. (40) which can be written

as

KðconcÞ 	 KðconcÞ
0 ðNÞe�fðN�1Þe�HðNÞ: ð52Þ

The dependence of KðconcÞ on N is mainly originated by

the same factor exp½�fðN � 1Þ� as in the case of a reg-
Fig. 7. Enhancement of D–A TET transfer caused by an energetic bias

(panel (a)) and by the Coulomb interaction (panel (b)). The calcula-

tions have been done with the same parameters as in Fig. 4 except the

temperature and the quantities D and Q.
ular bridge. However, corrections to this N -dependence

are due to the multiplier exp½�HðNÞ� with

HðNÞ ¼ �ð4Q=DEDÞ½3uðNÞ � 2N=ðN þ 1Þ�. [Note that

the Franck–Condon factor in KðconcÞ
0 ðNÞ related to su-

perexchange transitions shows a negligible dependence
on the bridge length.] Since HðNÞ < 0 for all N (re-

member the specificity of the bridge with N ¼ 1) we can

conclude that the Coulomb interaction between the

centers of electron localization facilitates the concerted

component of overall D–A TET rate. Fig. 6(c) illustrates

the combined influence of a bias as well as of the Cou-

lomb interaction on KTET. A comparison with Fig. 5(b)

shows that this influence promotes the efficiency of D–A
TET processes across longer bridges. Fig. 7 supports

this conclusion for the case of a DBA system with a

given number of bridge units (N ¼ 3). It shows that even

a small increase of the energy bias D (up to 0.01 eV) or

the Coulomb interaction Q (up to 0.1 eV) can increase

the overall transfer rate up to one order of magnitude

compared to the case with D ¼ 0 and Q ¼ 0.
5. Conclusion

The general expression for an overall D–A TET rate
KTET (cf. Eqs. (13)–(17) and (19)) and as well as the

simplified analytic forms for the superexchange cou-

plings (Eqs. (8)–(10), (39) and (40)) and the sequential

transfer rates (Eqs. (41) and (42)) have to be considered

as the main results of this work. The derived formulas

allowed us to understand the stepwise and the concerted

mechanisms of the TET between the D and the A in-

terconnected by a bridge B � B1B2 � � �BN which may
have a regular or an irregular energetic structure. It has

been shown that the origin of the stepwise mechanism is

the two-step single-electron transition between the do-

nor state jDi and the intermediate state jIi (the first

transfer step which is characterized by the rates KDI and

KID), and between the intermediate state jIi and the

acceptor state jAi (the second transfer step which is

characterized by the rates KIA and KAI). The first and the
second step are mediated by the set of bridging states

jBmi and j~Bmi, respectively. During each step a single

electron is not only transferred along the sequential

pathway (multistep single-electron hopping between the

neighboring sites). Rather the superexchange pathway

(unistep single-electron hopping between the D and the

A centers) is used as well.

Additionally, the common two-electron stepwise
route could be identified as a thermally activated elec-

tron-transfer reaction via the intermediate state

I � D�BA� (cf. scheme (b) in Fig. 2). In contrast, the

same state D�BA� appears as a virtual state for the

concerted D–A TET. Hence, the concerted route is as-

sociated with the two-electron superexchange unistep
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hopping between the states D�BA and DBA�. Such a

D–A TET can take place even at T ¼ 0 K.

The derived analytical expressions for KTET are quite

appropriate to analyze the influence of the bridge ener-

getic bias on the D–A TET and the effect of the Cou-
lomb interaction between different sites which can be

occupied by the transferred electrons (i.e. between the

sites D, A and B1, B2; . . .BN ). Both effects may modify

the identical energies of a regular bridge. The resulting

irregularity can either facilitate or complicate the D–A

TET depending on the strength of the perturbation and

the number of bridge units.

In the present work main attention has been focused
on the analysis of those D–A TET processes for which

the stepwise route is determined by single-electron su-

perexchange hopping transitions. This decision has been

caused by the necessity to compare the efficiency of the

stepwise and the concerted route at conditions where the

routes are defined by single-electron and two-electron

superexchange hopping transitions. Although the two-

electron superexchange process decreases with the
bridge length much stronger than the single-electron

process, it could be shown that the concerted mechanism

may exceed the stepwise one for a very short bridge

(N ¼ 1; 2, cf. Figs. 6(b) and (c)). This becomes possible if

the energy bias and/or the Coulomb interaction perturb

the regular arrangement of the site energies in the

bridge. Such a result indicates the need to account for

both mentioned effects when considering distant TET in
molecular structures.

Finally, we point to another factor which may in-

fluence the D–A TET. In biological systems the rate

of a TET process essentially depends on the pH-value

of the surrounding solvent. [For instance, it has been

found that just the concerted mechanism of a D–A

TET can be responsible for the pH-dependence of a

two-electron reduction in micothione reductase [24].]
And, it is well known from the classical studies by

Marcus [37] and others [38–41] that the reorganization

energy essentially determines the efficiency of the SET

in solvents (see also more recent results [1,4,5,8,42]).

Therefore, TET reactions in polar solvents are very

specific and where the polarizability of the solvent

may strongly influences the TET process [25,43].

Moreover, TET in polar solvents may proceed across
more then one intermediate state so that a more

complex concerted mechanism as discussed here can

be formed in the course of TET [35]. We consider all

this as a main challenge for further studies.
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Appendix A. Energy level scheme for an irregular DBA

system

If an energetic bias D is present between neighboring

units of an otherwise regular bridge the energies of the

bridge states become Em ¼ EB þ �
ðbiasÞ
m and ~En ¼ ~EBþ

~�
ðbiasÞ
n (m; n ¼ 1; 2; . . . ;N ) while ED ¼ Eð0Þ

D , EA ¼ Eð0Þ
A þ

�
ðbiasÞ
A and EI ¼ Eð0Þ

I þ �
ðbiasÞ
I . The various energetic shifts

read in detail (see also [23])

�
ðbiasÞ
D ¼ 0; �

ðbiasÞ
A ¼ �2ðN � 1ÞD; ðA:1Þ

�
ðbiasÞ
I ¼ �ðN � 1ÞD; �ðbiasÞm ¼ �ðm� 1ÞD; ðA:2Þ

~�ðbiasÞn ¼ �ðN � 1ÞD� ðn� 1ÞD: ðA:3Þ

In order to specify the energetic shifts caused by the

Coulomb interaction between the sites X and Y of

electron localization we employ the following semi-

phenomenological model. We assume that already in the

absence of the two excess electrons each site X is char-

acterized by an effective charge qðX Þ. Hence, the inter-

site Coulomb interaction reads

V ðCoulÞðXY Þ ¼ qðX ÞqðY Þ
4p�RXY

: ðA:4Þ

Here, � is the medium permittivity and RXY is the dis-

tance between the sites X and Y . Replacing X and Y by

D, A, and Bm we get the Coulombic interaction energy

of the DBA system at the absence of excess electrons. If

the latter are introduced into the system the charge of
the sites changes if occupied by a single excess electron

or by both. In the first case, we replace X and Y in Eq.

(A.4) by D�, A�, and B�
m . If a double population of the

D or the A is present we have to introduce the notation

D��, A�� into Eq. (A.4). Accordingly, we may calculate

the related energetic shift �
ðCoulÞ
M of the electronic state

jMi. As an example we consider the change of the en-

ergy ED:

�
ðCoulÞ
D ¼ qðD��ÞqðAÞ

4p�RDA

þ qðD��ÞqðBÞ
4p�

XN
m¼1

1

RDm

þ qðAÞqðBÞ
4p�

XN
m¼1

1

RAm
þ qðBÞ2

4p�

XN
m¼1

X
n<m

1

Rmn
:

ðA:5Þ

The expression implies a bridge with identical units
where qðBÞ � qðB1Þ ¼ qðB2Þ ¼ � � � ¼ qðBN Þ. In line with

the scheme of Fig. 1 we obtain the distances between the

redox-centers as
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RDA ¼ lD þ aðN � 1Þ þ lA; RDm ¼ lD þ aðm� 1Þ;
RAm ¼ lA þ aðN � mÞ; Rmn ¼ aðjm� njÞ:

ðA:6Þ

These relations indicate that Eq. (A.5) depends in a ra-

ther complicated manner on the number of bridge units.

An essential simplification, however, appears for a DBA

systems with a neutral bridge (qðBÞ 	 0). Accordingly,

only the first term in Eq. (A.5) remains. In what follows

we assume qðBÞ ¼ 0 and obtain

�
ðCoulÞ
D ¼ qðD��ÞqðAÞ

4p�RDA

; ðA:7Þ

�
ðCoulÞ
I ¼ qðD�ÞqðA�Þ

4p�RDA

; ðA:8Þ

�
ðCoulÞ
A ¼ qðDÞqðA��Þ

4p�RDA

; ðA:9Þ

�ðCoulÞm ¼ qðD�ÞqðAÞ
4p�RDA

þ qðD�ÞqðB�Þ
4p�RDm

þ qðAÞqðB�Þ
4p�RAm

; ðA:10Þ

~�ðCoulÞn ¼ qðDÞqðA�Þ
4p�RDA

þ qðDÞqðB�Þ
4p�RDn

þ qðA�ÞqðB�Þ
4p�RAn

: ðA:11Þ

If the presence of two electrons at the D or at the A

transform both centers into neutral states one has to put

qðD��Þ 	 qðA��Þ ¼ 0. Below we present the energetic

shifts for this case by additionally assuming qðD�Þ 	
qðA�Þ � q1 > 0, and thus qðDÞ 	 qðAÞ � q2 > q1 > 0.

Noting that qðB�
mÞ � qB < 0 and introducing the quan-

tities

U ð1ð2ÞÞ
DA ¼ q1q1ð2Þ

4p�a
; U ð1ð2ÞÞ

B ¼ jqBjq1ð2Þ
4p�a

; ðA:12Þ

one obtains

�
ðCoulÞ
D ¼ 0; �

ðCoulÞ
A ¼ 0; �

ðCoulÞ
I ¼ U ð1Þ

DA=rDA; ðA:13Þ

�ðCoulÞm ¼ U ð2Þ
DA=rDA � U ð1Þ

B =rDm � U ð2Þ
B =rAm; ðA:14Þ

~�ðCoulÞn ¼ U ð1Þ
DA=rDA � U ð2Þ

B =rDn � U ð1Þ
B =rAn: ðA:15Þ

Here, we have introduced the dimensionless distances

rDA � RDA=a, rDm � RDm=a, and rAn � RAn=a.
Appendix B. Corrections for the superexchange matrix

elements

To derive analytic expressions for the matrix elements

we start from Eqs. (8)–(10) supplemented by Eq. (3) and

consider the product
QN

m¼1 DEmD. According to the
identity
YN
m¼1

DEmD ¼ ðDEDÞN
YN
m¼1

½1þ ðD�mD=DEDÞ�

¼ ðDEDÞN exp
XN
m¼1

ln½1
(

þ ðD�mD=DEDÞ�
)

ðB:1Þ

and by noting the condition jD�mDj � DED, one can

expand ln½1þ ðD�mD=DEDÞ� with respect to ðD�mD=DEDÞ.
The lowest order contribution gives

YN
m¼1

DEmD ¼ ðDEDÞN exp
XN
m¼1

ðD�mD=DEDÞ
( )

: ðB:2Þ

In the same way one can specify the approximate form
of the product

QN
m¼1 DEmI. Therefore, in accordance with

Eq. (8) one derives

jTDIj2 	 jT ðregÞ
DI ðNÞj2e�H1ðNÞ: ðB:3Þ

To determine factor H1ðNÞ ¼
PN

m¼1½ðD�mD=DEDÞþ
ðD�mI=DEIÞ� one has to use Eqs. (29), (30) and (34). As

an example, we consider a DBA system where

lD ¼ a ¼ lA (cf. Fig. 1) and q2 ¼ 2q1 > 0, qB ¼ �q1.
Then, one obtains (cf. Eq. (A.12)) U ð2Þ

DA ¼ 2U ð1Þ
DA � 2Q

and U ð2Þ
B ¼ U ð1Þ

B ¼ 2Q (Q � q21=4p�a). Therefore,

H1ðNÞ ¼ 2Q
DED

�
þ Q
DEI

�
N

N þ 1
� 3

Q
DED

�
þ Q
DEI

�

� u1ðNÞ þ D
DEI

�
� D
DED

�
u2ðNÞ; ðB:4Þ

where the distance dependence is contained in the

function (C 	 0:577 is Euler’s constant)

u1ðNÞ ¼
XN
m¼1

1

m
¼

XN
m¼1

1

N � mþ 1

	 C þ lnN þ 1

2N
� 1

12NðN � 1Þ þ � � � ; ðB:5Þ

and in the function

u2ðNÞ ¼
XN
m¼1

ðm� 1Þ ¼
XN
m¼1

ðN � mÞ

¼ 1

2
NðN � 1Þ: ðB:6Þ

Analogously one obtains

jTIAj2 	 jT ðregÞ
IA ðNÞj2e�H2ðNÞ; ðB:7Þ

with an expression for H2ðNÞ which follows from Eq.

(B.4) after replacing DED and DEI by D~EA and D~EI, re-

spectively. The same way allows to transform Eq. (10)

into

jTDAj2 	 jT ðregÞ
DA ðNÞj2e�HðNÞ ðB:8Þ

with
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HðNÞ ¼ � Q
DED

þ Q
DEA

þ Q

D~ED

þ Q

D~EA

� 3u1ðNÞ
�

� 2
N

N þ 1

�

þ D
DEA

�
� D
DED

þ D

D~EA

� D

D~ED

�
u2ðNÞ

þ D
DEA

�
� D

D~ED

�
NðN � 1Þ: ðB:9Þ
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