6 The The Quantum Master Equation in Energy Representation

we transform the QME into the energy (state) representation with respect to the system Hamiltonian; suppose we have solved the eigenvalue problem for H_{S}

$$
H_{\mathrm{S}}|a\rangle=E_{a}|a\rangle
$$

the reduced density matrix (RDM) is given by

$$
\rho_{a b}(t)=\langle a| \hat{\rho}(t)|b\rangle
$$

the matrix elements of the system part of the system-reservoir coupling read

$$
\langle a| K_{u}|b\rangle=K_{a b}^{(u)}
$$

the energy representation offers the advantage that

$$
U_{\mathrm{S}}(\tau)|a\rangle=e^{-i E_{a} \tau / \hbar}|a\rangle \equiv e^{-i \omega_{a} \tau}|a\rangle
$$

we take respective matrix elements of the equation of motion for the RDO (note the introduction of transition frequencies $\omega_{a b}=\omega_{a}-\omega_{b}$)

$$
\frac{\partial}{\partial t} \rho_{a b}=-i \omega_{a b} \rho_{a b}-\frac{i}{\hbar} \sum_{c} \sum_{u}\left\langle\Phi_{u}\right\rangle_{\mathrm{R}}\left(K_{a c}^{(u)} \rho_{c b}-\rho_{a c} K_{c b}^{(u)}\right)+\langle a|\left(\frac{\partial \hat{\rho}}{\partial t}\right)_{\text {diss }}|b\rangle
$$

the dissipative part is firstly considered in it's non-Markovian version

$$
\begin{gathered}
\langle a|\left(\frac{\partial \hat{\rho}}{\partial t}\right)_{\text {diss }}|b\rangle=-\sum_{u, v} \int_{0}^{t-t_{0}} d \tau\left\{C_{u v}(\tau)\left(\langle a| K_{u} U_{\mathrm{S}}(\tau) K_{v} \hat{\rho}(t-\tau) U_{\mathrm{S}}^{+}(\tau)-U_{\mathrm{S}}(\tau) K_{v} \hat{\rho}(t-\tau) U_{\mathrm{S}}^{+}(\tau) K_{u}|b\rangle\right)\right. \\
\left.-C_{v u}(-\tau)\left(\langle a| K_{u} U_{\mathrm{S}}(\tau) \hat{\rho}(t-\tau) K_{v} U_{\mathrm{S}}^{+}(\tau)|b\rangle-\langle a| U_{\mathrm{S}}(\tau) \hat{\rho}(t-\tau) K_{v} U_{\mathrm{S}}^{+}(\tau) K_{u}|b\rangle\right)\right\}
\end{gathered}
$$

introducing two times complete sets of system states results in

$$
\begin{gathered}
\langle a|\left(\frac{\partial \hat{\rho}}{\partial t}\right)_{\text {diss }}|b\rangle \equiv\left(\frac{\partial \rho_{a b}}{\partial t}\right)_{\text {diss }}=-\sum_{c, d} \sum_{u, v} \int_{0}^{t-t_{0}} d \tau\left\{C _ { u v } (\tau) \left(K_{a c}^{(u)} e^{-i \omega_{c} \tau} K_{c d}^{(v)} \rho_{d b}(t-\tau) e^{i \omega_{b} \tau}\right.\right. \\
\left.\left.-e^{-i \omega_{a} \tau} K_{a c}^{(v)} \rho_{c d}(t-\tau) e^{i \omega_{d} \tau} K_{d b}^{(u)}\right)-C_{v u}(-\tau)\left(K_{a c}^{(u)} e^{-i \omega_{c} \tau} \rho_{c d}(t-\tau) K_{d b}^{(v)} e^{i \omega_{b} \tau}-e^{-i \omega_{a} \tau} \rho_{a c}(t-\tau) K_{c d}^{(v)} e^{i \omega_{d} \tau} K_{d b}^{(u)}\right)\right\}
\end{gathered}
$$

a rearrangement of terms gives

$$
\begin{gathered}
\left(\frac{\partial \rho_{a b}}{\partial t}\right)_{\text {diss }}=-\sum_{c, d} \sum_{u, v} \int_{0}^{t-t_{0}} d \tau\left(C_{v u}(-\tau) K_{d b}^{(u)} K_{c d}^{(v)} e^{i \omega_{d a} \tau} \rho_{a c}(t-\tau)+C_{u v}(\tau) K_{a c}^{(u)} K_{c d}^{(v)} e^{i \omega_{b c} \tau} \rho_{d b}(t-\tau)\right. \\
\left.-\left\{C_{v u}(-\tau) K_{a c}^{(u)} K_{d b}^{(v)} e^{i \omega_{b c} \tau}+C_{u v}(\tau) K_{d b}^{(u)} K_{a c}^{(v)} e^{i \omega_{d a} \tau}\right\} \rho_{c d}(t-\tau)\right)
\end{gathered}
$$

a more compact notation of this equation is achieved by introducing the tetradic matrix called memory matrix

$$
M_{a b, c d}(t)=\sum_{u, v} C_{u v}(t) K_{a b}^{(u)} K_{c d}^{(v)}
$$

it satisfies the relation

$$
M_{a b, c d}^{*}(t)=\sum_{u, v} C_{v u}(-t) K_{b a}^{(u)} K_{d c}^{(v)}=M_{d c, b a}(-t)
$$

the dissipative part of the non-Markovian density matrix equation reads

$$
\begin{aligned}
&\left(\frac{\partial \rho_{a b}}{\partial t}\right)_{\text {diss. }}=- \sum_{c d} \int_{0}^{t-t_{0}} d \tau\left(M_{c d, d b}(-\tau) e^{i \omega_{d a} \tau} \rho_{a c}(t-\tau)+M_{a c, c d}(\tau) e^{i \omega_{b c} \tau} \rho_{d b}(t-\tau)\right. \\
&\left.-\left[M_{d b, a c}(-\tau) e^{i \omega_{b c} \tau}+M_{d b, a c}(\tau) e^{i \omega_{d a} \tau}\right] \rho_{c d}(t-\tau)\right)
\end{aligned}
$$

one can proof that the total occupation probability of the different eigenstates of H_{S} are conserved, i.e. $\sum_{a} \partial \rho_{a a} / \partial t=0$; since the reservoir is at temperature T the density matrix displays the limiting behavior

$$
\lim _{t \rightarrow \infty} \rho_{a b}(t)=\delta_{a, b} e^{-E_{a} / k_{\mathrm{B}} T} / \sum_{c} e^{-E_{c} / k_{\mathrm{B}} T}
$$

6.1 Multi-Level Redfield Equations

we carry out the Markov approximation

$$
\rho_{a b}(t-\tau)=\langle a| \hat{\rho}(t-\tau)|b\rangle \approx\langle a| U_{\mathrm{S}}^{+}(\tau) \hat{\rho}(t) U_{\mathrm{S}}(\tau)|b\rangle=e^{i \omega_{a b} \tau} \rho_{a b}(t)
$$

and obtain

$$
\begin{aligned}
\left(\frac{\partial \rho_{a b}}{\partial t}\right)_{\text {diss. }} \approx- & \sum_{c d} \int_{0}^{t-t_{0}} d \tau\left(M_{c d, d b}(-\tau) e^{i \omega_{d a} \tau} e^{i \omega_{a c} \tau} \rho_{a c}(t)+M_{a c, c d}(\tau) e^{i \omega_{b c} \tau} e^{i \omega_{d b} \tau} \rho_{d b}(t)\right. \\
& \left.-\left[M_{d b, a c}(-\tau) e^{i \omega_{b c} \tau}+M_{d b, a c}(\tau) e^{i \omega_{d a} \tau}\right] e^{i \omega_{c d} \tau} \rho_{c d}(t)\right)
\end{aligned}
$$

and finally

$$
\begin{aligned}
\left(\frac{\partial \rho_{a b}}{\partial t}\right)_{\text {diss. }}= & -\sum_{c d} \int_{0}^{\infty} d \tau\left(M_{c d, d b}(-\tau) e^{i \omega_{d c} \tau} \rho_{a c}(t)+M_{a c, c d}(\tau) e^{i \omega_{d c} \tau} \rho_{d b}(t)\right. \\
& {\left.\left[M_{d b, a c}(-\tau) e^{i \omega_{b d} \tau}+M_{d b, a c}(\tau) e^{i \omega_{c a} \tau}\right] \rho_{c d}(t)\right) }
\end{aligned}
$$

the time integrals can be viewed as half-sided Fourier transforms of the memory functions; these complex quantities define the dissipative part of the QME in the Markov approximation; their real part describes an irreversible redistribution of the amplitudes contained in the various parts of reduced density matrix;
the imaginary part introduces terms which can be interpreted as a modification of the transition frequencies and the respective mean-field matrix elements;
they can be accounted for by changing the energy scale or adjusting the transition frequencies; therefore, we restrict ourselves to the discussion of the real part only leading to the following (damping) matrix

$$
\Gamma_{a b, c d}(\omega)=\operatorname{Re} \int_{0}^{\infty} d \tau e^{i \omega \tau} M_{a b, c d}(\tau)=\operatorname{Re} \sum_{u, v} K_{a b}^{(u)} K_{c d}^{(v)} \int_{0}^{\infty} d \tau e^{i \omega \tau} C_{u v}(\tau)
$$

the dissipative part of the QME in the state representation becomes

$$
\begin{aligned}
\left(\frac{\partial \rho_{a b}}{\partial t}\right)_{\text {diss. }} & =-\sum_{c, d}\left(\Gamma_{b d, d c}\left(\omega_{c d}\right) \rho_{a c}(t)+\Gamma_{a c, c d}\left(\omega_{d c}\right) \rho_{d b}(t)\right. \\
& \left.-\left[\Gamma_{c a, b d}\left(\omega_{d b}\right)+\Gamma_{d b, a c}\left(\omega_{c a}\right)\right] \rho_{c d}(t)\right)
\end{aligned}
$$

we introduce the relaxation matrix

$$
R_{a b, c d}=\delta_{a, c} \sum_{e} \Gamma_{b e, e d}\left(\omega_{d e}\right)+\delta_{b, d} \sum_{e} \Gamma_{a e, e c}\left(\omega_{c e}\right)-\Gamma_{c a, b d}\left(\omega_{d b}\right)-\Gamma_{d b, a c}\left(\omega_{c a}\right)
$$

the dissipative contribution to the reduced density matrix equations of motion can be finally written as

$$
\left(\frac{\partial \rho_{a b}}{\partial t}\right)_{\text {diss. }}=-\sum_{c d} R_{a b, c d} \rho_{c d}(t)
$$

the tetradic relaxation matrix is frequently termed Redfield tensor after A. G. Redfield who introduced it in the theory of nuclear magnetic resonance spectroscopy in the early sixties;
since the density matrix elements can be distinguished as populations ($a=b$) and coherences $(a \neq b)$ it is reasonable to discuss $R_{a b, c d}$ according to its effect on the dynamics of $\rho_{a a}$ and $\rho_{a b}$;
6.1.1 Population transfer: $a=b, c=d$
the respective matrix elements of the Redfield tensor can be written as

$$
R_{a a, c c}=2 \delta_{a, c} \sum_{e} \Gamma_{a e, e a}\left(\omega_{a e}\right)-2 \Gamma_{c a, a c}\left(\omega_{c a}\right)=\delta_{a, c} \sum_{e} k_{a \rightarrow e}-k_{c \rightarrow a}
$$

we introduced the rate $k_{a \rightarrow b}$ for the transition from state $|a\rangle$ to state $|b\rangle$ according to

$$
k_{a \rightarrow b}=2 \Gamma_{a b, b a}\left(\omega_{a b}\right)=2 \operatorname{Re} \int_{0}^{\infty} d \tau e^{i \omega_{a b} \tau} M_{a b, b a}(\tau)=\int_{0}^{\infty} d \tau e^{i \omega_{a b} \tau} M_{a b, b a}(\tau)+\int_{0}^{\infty} d \tau e^{-i \omega_{a b} \tau} M_{a b, b a}^{*}(\tau)
$$

the two terms on the last line can be combined to give

$$
k_{a \rightarrow b}=\int d \tau e^{i \omega_{a b} \tau} M_{a b, b a}(\tau) \equiv M_{a b, b a}\left(\omega_{a b}\right)
$$

using the definition of the memory matrix we obtain an alternative expression for the energy relaxation rates

$$
k_{a \rightarrow b}=\sum_{u, v} C_{u v}\left(\omega_{a b}\right) K_{a b}^{(u)} K_{b a}^{(v)}
$$

the rate for a particular transition is determined by the matrix elements of the operators K_{u} and by the value of the correlation function taken at the respective transition frequency, $C_{u v}\left(\omega=\omega_{a b}\right)$; this last dependence can be viewed as a "probing" of the spectral density at this frequency;
in terms of the harmonic reservoir model this implies that there has to be a reservoir oscillator mode which can absorb or emit a reservoir quantum at the transition frequency of the system; since the transitions between the system states are therefore accompanied by energy dissipation into the reservoir, the rates are also called energy relaxation rates;
we can proof that the principle of detailed balance is fulfilled

$$
k_{a \rightarrow b}=\sum_{u, v} C_{v u}\left(\omega_{a b}\right) K_{a b}^{(v)} K_{b a}^{(u)}=e^{\hbar \omega_{a b} / k_{\mathrm{B}} T} \sum_{u, v} C_{u v}\left(\omega_{b a}\right) K_{b a}^{(u)} K_{a b}^{(v)}=e^{\hbar \omega_{a b} / k_{\mathrm{B}} T} k_{b \rightarrow a}
$$

6.1.2 Coherence dephasing: $a \neq b, a=c, b=d$
in this case we have

$$
R_{a b, a b} \equiv \gamma_{a b}=\sum_{e}\left(\Gamma_{a e, e a}\left(\omega_{a e}\right)+\Gamma_{b e, e b}\left(\omega_{b e}\right)\right)-\Gamma_{a a, b b}(0)-\Gamma_{b b, a a}(0)
$$

the expression determines the damping of the off-diagonal elements of the reduced density matrix;
these are called coherences since they represent phase relations between different states;
the decay of coherences is known as the dephasing process, and the $\gamma_{a b}$ are called dephasing rates;
we notice that the first part of the dephasing rate can be written as $\gamma_{a}+\gamma_{b}$ where γ_{a} and γ_{b} equals half of the relaxation rates;
within the present model energy relaxation is a source of coherence dephasing;
the second part denoted by $\gamma_{a b}^{(\mathrm{pd})}$ is defined by the reservoir correlation function at zero frequency, i.e., it represents an elastic type of collision where no energy is exchanged between system and reservoir;
these rates are usually named pure dephasing rates and we write

$$
\gamma_{a b}=\frac{1}{2} \sum_{e} k_{a \rightarrow e}+\frac{1}{2} \sum_{e} k_{b \rightarrow e}+\gamma_{a b}^{(\mathrm{pd})}
$$

with

$$
\gamma_{a b}^{(\mathrm{pd})}=-\sum_{u, v} K_{a a}^{(u)} K_{b b}^{(v)} C_{u v}(\omega=0)
$$

6.1.3 Remaining Elements of $R_{a b, c d}$

we can distinguish the following transitions induced by $R_{a b, c d}$; first coherences can be transferred between different pairs of states: $\rho_{a b} \rightarrow \rho_{c d}\left(R_{a b, c d}\right)$;
second, populations can change to coherences: $\rho_{a a} \rightarrow \rho_{c d}\left(R_{a a, c d}\right)$;
and finally, the coherences can be transformed into populations: $\rho_{a b} \rightarrow \rho_{c c}\left(R_{a b, c c}\right)$;
as a consequence there is a mixing between different types of reduced density matrix elements;

6.2 The Secular Approximation

in order to see under what conditions the mixing between population and coherence type density matrix elements can be neglected we change to the interaction representation

$$
\left(\frac{\partial \rho_{a b}^{(\mathrm{I})}}{\partial t}\right)_{\text {diss }}=-\sum_{c d} R_{a b, c d} e^{i\left(\omega_{a b}-\omega_{c d}\right)\left(t-t_{0}\right)} \rho_{c d}^{(\mathrm{I})}(t)
$$

the right-hand side contains various contributions which oscillate with the combined frequency $\omega_{a b}-\omega_{c d}$;
all contributions to the equations of motion where $1 /\left|\omega_{a b}-\omega_{c d}\right|$ is much smaller than the time increment Δt for which the QME is solved will cancel each other upon integration of the equations of motion due to destructive interference;
let us suppose that we can neglect all those contributions to the dissipative part for which the condition $1 /\left|\omega_{a b}-\omega_{c d}\right| \ll \Delta t$ is fulfilled;
there are at first glance two types of contributions which cannot be neglected since $\left|\omega_{a b}-\omega_{c d}\right|=0$ holds;
these are related to those elements of $R_{a b, c d}$ which were discussed as cases (1) and (2) in the previous section;
however, for systems with degenerate transition frequencies such as a harmonic oscillator $\mid \omega_{a b}$ $\omega_{c d} \mid=0$ can be fulfilled even if $R_{a b, c d}$ belongs to the category (3) of the previous section;
in general the approximation which builds upon the consideration of only those terms in the dissipative part of the QME for which $\left|\omega_{a b}-\omega_{c d}\right|=0$ holds is called secular approximation; it is also often also termed myred rotating wave approximation;
note that within the Markov approximation the smallest possible time step, Δt, is determined by the memory time $\tau_{\text {mem }}$;
if, however, in systems with nearly degenerate transition frequencies the condition $1 /\left|\omega_{a b}-\omega_{c d}\right|>$ $\tau_{\text {mem }}$ is realized the secular approximation determines the coarse graining of the time axis and therefore imposes a lower limit on the time resolution of the reduced density matrix; thus, we have seen that even in the secular approximation there is a chance that populations and coherences are coupled via $R_{a b, c d}$; if we neglect this coupling, i.e. if we suppose that $\left|\omega_{a b}-\omega_{c d}\right|=0$ holds only in the cases (1) and (2) of the previous section we are at the level of the so-called Bloch model

$$
\left(\frac{\partial P_{a}}{\partial t}\right)_{\text {diss }}=-\sum_{c} R_{a a, c c} P_{c}(t)
$$

and

$$
\left(\frac{\partial \rho_{a b}}{\partial t}\right)_{\text {diss }}=-\left(1-\delta_{a b}\right) R_{a b, a b} \rho_{a b}
$$

the Redfield tensor does not mix diagonal and off-diagonal elements of the reduced density matrix; we can consider the equations for the populations and the coherences separately;

6.3 State Expansion of the System-Reservoir Coupling

we introduce an expansion of $H_{\mathrm{S}-\mathrm{R}}$ in the eigenstates of H_{S} :

$$
H_{\mathrm{S}-\mathrm{R}}=\sum_{a, b}\langle a| H_{\mathrm{S}-\mathrm{R}}|b\rangle|a\rangle\langle b|
$$

it is a special version of the factorized ansatz for the system-reservoir interaction Hamiltonian; we have to identify the index u with $(a b)$, K_{u} with $|a\rangle\langle b|$ (i.e. $K_{c d}^{(u)}=\delta_{c, a} \delta_{d, b}$), and Φ_{u} with $\langle a| H_{\mathrm{S}-\mathrm{R}}|b\rangle$; the K_{u}-operators do not represent Hermitian operators;
in a first step we set

$$
\langle a| H_{\mathrm{S}-\mathrm{R}}|b\rangle \equiv \Phi_{a b}=\sum_{\xi} \hbar \omega_{\xi} g_{a b}(\xi) Q_{\xi}
$$

the (energy) relaxation rates are obtained as $\quad k_{a \rightarrow b}=C_{a b, b a}\left(\omega_{a b}\right)$ we get for the correlation function

$$
C_{a b, c d}(\omega)=2 \pi \omega^{2}[1+n(\omega)]\left[J_{a b, c d}(\omega)-J_{a b, c d}(-\omega)\right]
$$

where we introduced the generalized spectral density

$$
J_{a b, c d}(\omega)=\sum_{\xi} g_{a b}(\xi) g_{c d}(\xi) \delta\left(\omega-\omega_{\xi}\right)
$$

the relaxation rates follow as (be aware of the relation $-n(-\omega)=1+n(\omega)$)

$$
k_{a \rightarrow b}=2 \pi \omega_{a b}^{2}\left(\left[1+n\left(\omega_{a b}\right)\right] J_{a b, b a}\left(\omega_{a b}\right)+n\left(\omega_{b a}\right) J_{a b, b a}\left(\omega_{b a}\right)\right)
$$

finally, we demonstrate that in case of the Bloch model it is possible to change back from the energy representation to the following operator notation of the QME

$$
\left(\frac{\partial \hat{\rho}(t)}{\partial t}\right)_{\text {diss }}=-\sum_{a, b}\left\{\frac{1}{2}\left[k_{a \rightarrow b}|a\rangle\langle a|, \hat{\rho}(t)\right]_{+}-k_{a \rightarrow b}|b\rangle\langle a| \hat{\rho}(t)|a\rangle\langle b|\right\}-\sum_{a, b}\left(1-\delta_{a, b}\right) \gamma_{a b}^{(\mathrm{pd})}|a\rangle\langle a| \hat{\rho}(t)|b\rangle\langle b|
$$

the first sum including an anti-commutator is exclusively determined by the energy relaxation rate $k_{a \rightarrow b}$ whereas the second sum incorporates the pure dephasing part $\gamma_{a b}^{(\mathrm{pd})}$;
once pure dephasing vanishes the whole dissipative part resembles what is often called the Lindblad form;
it is possible to derive this type of dissipative contribution to the equation of motion of the reduced density operator in a more formal way starting from the assumption that the diagonal elements of the reduced density operator have to be greater or equal to zero in any basis set; this has been shown by Lindblad in the 1970s;
the advantage is that the condition $\rho_{a a}(t) \geq 0$ is guaranteed by construction in contrast to the case of the QME;
we proof the expression by changing to matrix elements

$$
\begin{gathered}
\langle a|\left(\frac{\partial \hat{\rho}}{\partial t}\right)_{\text {diss }}|b\rangle= \\
-\frac{1}{2}\langle a| \sum_{c, d} k_{c \rightarrow d}\left\{[|c\rangle\langle c|, \hat{\rho}(t)]_{+}-2|d\rangle\langle c| \hat{\rho}(t)|c\rangle\langle d|\right\}|b\rangle-\langle a| \sum_{c, d}\left(1-\delta_{c, d}\right) \gamma_{c d}^{(\mathrm{pd})}|c\rangle\langle c| \hat{\rho}(t)|d\rangle\langle d||b\rangle \\
=-\frac{1}{2} \sum_{d}\left(k_{a \rightarrow d}+k_{b \rightarrow d}\right) \rho_{a b}(t)+\delta_{a, b} \sum_{c} k_{c \rightarrow a} \rho_{c c}(t)-\left(1-\delta_{a, b}\right) \gamma_{a b}^{(\mathrm{pd})} \rho_{a b}(t) \\
=-\delta_{a, b} \sum_{c}\left(k_{a \rightarrow c} \rho_{a a}(t)-k_{c \rightarrow a} \rho_{c c}(t)\right)-\left(1-\delta_{a, b}\right)\left(\sum_{c} \frac{1}{2}\left(k_{a \rightarrow c}+k_{b \rightarrow c}\right)+\gamma_{a b}^{(\mathrm{pd})}\right) \rho_{a b}(t)
\end{gathered}
$$

6.4 Lindblad Form of Density Matrix Equations

in order to simplify the notation somewhat we assume $\gamma_{a b}^{(\mathrm{pd})}=0$ and $H_{\mathrm{mf}}=0$; moreover we introduce so-called Lindblad operators as

$$
\hat{L}_{a b}^{+}=|a\rangle\langle b|
$$

as a result the full quantum master equation takes the form

$$
\frac{\partial}{\partial t} \hat{\rho}(t)=-\frac{i}{\hbar}\left[H_{\mathrm{S}}, \hat{\rho}(t)\right]_{-}-\frac{1}{2} \sum_{a, b} k_{a \rightarrow b}\left(\left[\hat{L}_{a b}^{+} \hat{L}_{a b}, \hat{\rho}(t)\right]_{+}-2 \hat{L}_{a b} \hat{\rho}(t) \hat{L}_{a b}^{+}\right)
$$

finally, we demonstrate how this notation can be used to change from a density matrix equation to an equation of motion for a particular observable;
we introduce \hat{O} as an operator representing a particular observable and being defined in the system state space;
it's expectation value is obtained as

$$
O(t)=\operatorname{trs}\{\hat{\rho}(t) \hat{O}\}=<\hat{O}>(t)
$$

a related equation is immediately obtained as

$$
\frac{\partial}{\partial t} O(t)=\operatorname{tr}\left\{\frac{\partial}{\partial t} \hat{\rho}(t) \hat{O}\right\}=-\frac{i}{\hbar} \operatorname{trg}_{\{ }\left\{\left[H_{\mathrm{S}}, \hat{\rho}(t)\right]_{-} \hat{O}\right\}-\frac{1}{2} \sum_{a, b} k_{a \rightarrow b} \operatorname{trs}\left\{\left[\hat{L}_{a b}^{+} \hat{L}_{a b}, \hat{\rho}(t)\right]_{+}-2 \hat{L}_{a b} \hat{\rho}(t) \hat{L}_{a b}^{+} \hat{O}\right\}
$$

we arrange the right-hand side somewhat and obtain

$$
\frac{\partial}{\partial t} O(t)=\frac{i}{\hbar} \operatorname{tr}_{S}\left\{\hat{\rho}(t)\left[H_{\mathrm{S}}, \hat{O}\right]_{-}\right\}-\frac{1}{2} \sum_{a, b} k_{a \rightarrow b} \operatorname{tr}_{S}\left\{\hat{\rho}(t)\left(\left[\hat{L}_{a b}^{+} \hat{L}_{a b}, \hat{O}\right]_{+}-2 \hat{L}_{a b}^{+} \hat{O} \hat{L}_{a b}\right)\right\}
$$

this can be written in a more compact form as

$$
\frac{\partial}{\partial t}<\hat{O}>(t)=\frac{i}{\hbar}<\left[H_{\mathrm{S}}, \hat{O}\right]_{-}>(t)-\frac{1}{2} \sum_{a, b} k_{a \rightarrow b}<\left[\hat{L}_{a b}^{+} \hat{L}_{a b}, \hat{O}\right]_{+}-2 \hat{L}_{a b}^{+} \hat{O} \hat{L}_{a b}>(t)
$$

the RDO is hidden in this notation what makes it ready for particular approximations (factorizations) of the bracket terms;

