4 Quantum State Diffusion Method II: Coherent State Expansion
the approach is valid for reservoirs which are formed by decoupled harmonic oscillators

4.1 Coherent States of a Harmonic Oscillator

The Displacement Operator
Hamiltonian of a 1d harmonic oscillator ~ H = 1(p* + w?¢?)
annihilation operator
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displaced wave function
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displacement operator D*(a) = exp (a(a — a™))



Coherent States
Bargmann coherent states: not renormalized, « is a complex number,
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states are eigenstates of the oscillator annihilation operator
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action of the creation operator
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normalization
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oscillator coordinate expectation value
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completeness relation
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since the coherent states are not normalized the additional factor 1/ x e~1°I" appears;
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the a-integral is computed in changing to polar coordinates |«| and ¢ in the complex a-plane
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Equilibrium Density Operator Expansion
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state sum
Z = tr{e *TY = 1 4 npp(w)

Bose-Einstein distribution .

npe(w) = chofksT _ |
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we introduce # = e~*/? and get for the complete equilibrium statistical operator
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4.2 Density Operator of a Quantum Particle Coupled to Phonons

The Model
quantum particle which moves across localization sites (charge migration in a molecular complex
or disordered semiconductor)
Hg = Z hmn’§0m><gpn‘

in the framework of an open quantum system approach the moving particle is considered as the
active system;
the ,, describe states localized at site m;
the Hamiltonian matrix is

Bonn = OmnEom + (1 = Opn) Vi

expression covers site-energies F,, and inter-site transfer couplings V,,..;
site-localized harmonic vibrations form the reservoir (heat bath)
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vibrations undergo a rearrangement if the particle arrives at a particular site;
if the vibrational frequencies are not affected and if only the normal modes become displaced we
arrive at the following system-reservoir coupling
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wave function defined in Schrédinger picture: W©®)(¢);

translation of the wave function in a particular interaction picture
[UE)(t)) = Ur(t)|W(t)) = exp(—iHrt/h)|¥(t))

related Hamiltonian follows as
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generalized force operator
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time evolution operator U(t) is introduced according to
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statistical operator
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WO(t) = Ur(t)W (1) Uy (1)
reduced statistical operator
p(t) = tre{W (1)} = trp{U§ (OW S () Ur(t)} = trr W) (1)}

generalization of the coherent states to the case of many vibrational modes
@) = ] lamy)
m?j
the completeness relation is understood as follows
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the expansion of an arbitrary state vector reads
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Zero-Temperature Case for the Reservoir

we derive an expression for the reduced density operator;
the initial value of the complete statistical operator shall take the form
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14)(0)) is the active system initial state and |0) denotes the overall reservoir oscillator ground-state

the reduced density operator can be rewritten
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with the state vector exclusively defined in the active system state space
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the reduced density operator is obtained as a superposition of time-dependent projectors |1, (1)) (1.(t)]



Case of Finite Temperature for the Reservoir
the initial state is considered as a mixed state
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with thermal vibrational distribution
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because of the harmonic model we get
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with Bose-Einstein distribution |
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the reduced density operator follows as
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the reduced density operator takes the form
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we again introduced state vectors which are only defined in the state-space of the active system
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4.3 Quantum State Diffusion

Zero-Temperature Case
we derive a Schrodinger equation for the state vectors |y, (t)) = (a|U(t)[0)]1(0)) which define the
reduced density operator;

it follows 5
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we can also treat this term by replacing a,,,;U(t) by U(t)a,,;(t) with a,,;(t) = U (t)an,U(t)
a time-derivative results in
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we integrate
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this expression indicates the vibrational displacement upon electronic excitation;
in a next step we get
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a second-order description with respect to the system-reservoir coupling is achieved if we replace
Ut —1)by Us(t — 1)
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the Schrodinger equation follows as
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we note the definition of the spectral density (no separation of a frequency factor)
Z gt / dw e ™ J(w) = 2mh? (1)

and neglect memory effects
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the convolution-less Schrodinger equation follows as
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final form of the Schrddinger equation (t = ¢ — 7)
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Realization of Complex Noise
zero-temperature correlation function
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we consider the a-integration and change in a first step from a = Rea + ¢Ima to polar coordinates
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new variables A = exp(—|al?) and B = /27 are introduced which both vary between zero and
one;
we note |a| = v—In A and dA = exp(—|a|?) x (—2|a])d|a|
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we introduced X (A, B) = v/—In A(cos 2B + isin 2m B)



we replace the summation with respect to the intramolecular vibrations by a frequency summation
(with respect to a finite separation of the frequency axis)
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the correlation function is rewritten according to
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this relation presents a way of determining the stochastic forces
= 1Y/ Dwlp(wp) X*(Ay, Bp)e!
k

for every k (and m) the A, and B, are chosen randomly between zero and one
it results a particular realization » of the time-dependent function F,,(¢)
the solution of the time-dependent Schrodinger equation gives a particular wave function |, (t))

the density operator follows as
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