The Driven Anharmonic Oscillator

we consider the 1d—motion of an active system driven by a laser pulse and coupled to a reservoir;
the latter is described as a huge number of harmonic oscillators in thermodynamic equilibrium;
the system Hamiltonian takes the form

2
Hs(t) = f—m 4 U(s) — uE(t)
s is the 1d—system coordinate; the potential shall have a minimum at s = 0; a possible application
would be the OH—stretching vibration of a water molecule; the potential can be well approximated

by a Morse—potential
,
U(S> — Edi.ss <1 — (7()"5‘) — E(liSS

the laser pulse is linearly polarized
E(t) =nE(t)
oscilllates with frequency wy and has a duration of 7,; accordingly, we write
E(t) = Eysin(wot) sin*(rt/7,)
we further note
p=np~e”
the concrete s—dependence refers to the OH—stretching vibration of water;



we note the eigenvalue equation (x/(s) = (s|M))

(Z- 4 U(s)) xar(s) = Barxar(s) = heonrcar(s)

the system—reservoir coupling is of the form

HS—R = S Z hwgggQg
3

according to the general notation we have K, = s and &, = » . hwegeQ¢; the matrix elements of
K,=K =sare
KMN = <M|S‘N> = SMN

the related reservoir correlation function has been already calculated
C(t) = 2rw*[1 + n(w)] (J(w) — J(—w))
we introduce the (reduced) density matrix
pun(t) = (M[p(t)|N)
and obtain the related equations of motion as
0

. 1
gﬂM]\'(t) = —iwynpun(t) + 7_1E (t) ; (dyrprn(t) — dgnpai(t)) — ; Rynkrprr(t)



the Redfield—tensor reads
Rynkr = 0mK Z Pnrro(wor) + 0N Z Pyvrrr(wirr) —Ukmno(win) — Uovoark (wark)
F F
the relaxation matrix takes the form

FMN’KL(CU) = ReZKﬁ}VKEg)L/dT eiWTCuv(T) = SMNSKLRGO(M>
0

u,v

where we introduced the half—-sided Fourier transformation

o0 o0

/ / /
Clw) = /d?‘ TO(T) = /dT e do e TC(w) = _/dw C(w')

2 2miw — W+ e

0 0
it follows ReC'(w) = C(w)/2 and we may write
Py kr(w) = synskrClw)/2
in particular, the transition rates are
kv = |sun]?Clwny) = 21| sun 2wty vl + n(wiry)] (J(wnw) — J(—warn))
= (M — N)27[L + n(wun)][spvwun 2T (wirn) + 0(N — M)2mn(wnar)|svwnar? I (waar)

the unit step function 0 regulates that the term ~ 1 + n is valid for M > N and the term ~ n for
M < N;
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Fig. 7. Different forms of the spectral density and related vibrational energy relaxation rates. (a) Flat spectral density
ﬂ'ha(d))/(2pmdw10) = 9.0 x 103 /fs (curve a). Spectral densities according to Eq. (19) with € = 2.5 and with w; = wyo/2 (curve
b), we = wyg (curve ¢), and we = 2wg (curve d). The position of the cut-off frequencies are marked separately by bold-face verti-
cal lines. Furthermore, various transition frequencies are shown by the thin vertical lines. The first series starts at wg and extends to
lower frequencies according to wj;, w3, wa3, wss and wes. The second series starts from 2w and continues to lower frequencies
with wyy, w31, w4, ws3, wes and wrs. (b) Relaxation rates versus vibrational quantum numbers. Application of a flat spectral density
mha(w) /[ (2peqwio) = 9.0 x 1073 /fs (circles). Application of spectral densities according to Eq. (19) with € = 2.5 and with w; = wyg/2

(crosses), we = wyg (diamonds), and w: = 2wy (tnangles).
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Fig. 2. Occupation probabilities Pp(t) of the vibrational states versus time resulting from the action of a sin‘-pulse with fre-
quency wp = 0.6812/ fs =~ (Es — Ep)/5h, pulse duration 7, = 1 ps and a field strength, corresponding to a Rabi frequency of
wr = dp&/h = 1.42/fs. The results for the ground state and the first 6 excited states are shown from the lower to the upper panel. (a)
Vanishing coupling to environmental degrees of freedom. (b) Coupling to an environment with a flat spectral density resulting in a life
time of fifth state equal to the pulse duration 75 = 7p = 1 ps.
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Fig. 2. (continued) (c) Coupling to an environment with a flat spectral density resulting in a life time of fifth state of 5 = 7,/4 = 250 fs.
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Fig. 5. Occupation probabilities Py () of the vibrational states versus time resulting from the action of a sin?-pulse with frequency
wg = 0.6812/ fs ~ (Es — Ep)/5Hh, pulse duration 7, = 1 ps and a field strength, corresponding to a Rabi frequency of wg = 2.49/fs. The
results for the ground state and the first 9 excited states are shown. (The pulse parameters correspond to the extreme in the middie of Fig.
3a. The competition between the fifth and ninth excited state results from a weak intemal coupling due to the high field strength.)



7 Excitation Energy Transfer Dynamics

ensemble of N,,, molecules which can exchange intramolecular electronic excitation energy;
examples: dye aggregate, supramolecular complex, organic crystal; photosynthetic light harvest-
ing systems; arrangement of semiconductor nanocrystals (quantum dots);

every molecule is labeled by m and described by its electronic ground-state ¢,,, with energy E,,,
and it’s first excited state ¢,,. with energy F,,.;

electronic excitation energy is moved from molecule m to molecule n via the Coulomb interaction
intermolecular wavefunction overlap is small and will be ignored;

product states of the various ¢,,, (a = g, €) form an expansion basis;

intramolecular and intermolecular vibrations modulate the molecular energies and Coulomb cou-
pling;

restriction to singly excited states results in the Frenkel-exciton Hamiltonian

Hex — Z((sm,nEm + Jmn)‘m> <TL’

m,n

singly excited state m) = [Pme) [Lnon [¥0g)

site energy En=En — Epg
Coulomb coupling







exciton states
= Z Cy(m)|im
with energy &, diagonalize the exciton Hamiltonian
Heo = Eola)(a

exciton vibrational coupling

Hevib = 3 > hwegun(€)Qelm)(n] =Y >~ hwed - Calm)g,un(€)Cs(n)|e) (6]

mmn £ a,f £ m,n

vibrational Hamiltonian

Hyp =Y hw:CECe
3
optical excitation

Hea(t) = —E(t) Y dp|m)(0] + Hee. = =E(t) Y~ da|e) (0] + He.

E(t) = eE(t)e ™" +c.c.
the system part of the interaction Hamiltonian is
Ky = |a) (B

and the bath part is
Oy =Y hwegap(€)(CF + C)
3



the reservoir correlation function takes the form
Cap, 76 Z w€ga5 9“/5 Hl + n(wg)]e_i%t + n(w§>€iw£t}

the spectral density has been deflned in the general form:
]aﬂ 7(5 Z gaﬁ 975 w - wf)

transitions between different exciton states are accompanied by the absorption or emission of a
single normal mode oscillator quantum; the spectral density j,s 3, taken at the exciton transition
frequency regulates the strength of such a transitions;
let us use the most simple variant of the density matrix theory, which neglects all elements of the
relaxation matrix that cannot be written in terms of energy relaxation and dephasing rates

0 _ i ‘
apoﬁ — 71&2(1;/3[)(1;5 - ()a/3 ; (ka%ﬁ:puu 7 kh’.%()fﬂl{l{) - (1 - ()a/’j)(q/uz =+ 7\/3),00.3
since the basis |a) diagonalizes the single—exciton Hamiltonian the coherent part on the right—

hand side contains only the transition frequencies between exciton eigenstates, (2.5
the transition rates read

oy = 2725 (11 020) s, 0 () + 1) 50 Us0))

respective dephasing rates are

1
— §Zka—>ﬂ
B



the stationary limit of the equations of motion for the single-exciton reduced density matrix will be
given by

o—Ea/kpT

Zo/ e—Ea//kBT ’

Pap(00) = dap

to illustrate the dynamics in the eigenstate representation we restrict ourselves to situations where
a factorization of the exciton—vibrational coupling matrix is justified g,5(&) = gas % 9(£);
the relaxation rates are given by

ko = 27| gap* Qg [1+ 1(Qup)] [1(Qup) — 5(—p)]
in this case the dissipative influence of the aggregate’s vibrational modes can be described by a
single, exciton state independent, spectral density

Zg O(w — we)

in the example we will use the model spectral density type

j(w) = 0(w) exp{-w/we} /2w;
being in H—aggregate configuration, the energetically highest exciton state has by far the largest
transition amplitude;
this allows us to assume that an external field can prepare the system in this particular state;
with the highest state being initially excited with probability one, the subsequent dynamics shows
no oscillations but a relaxation towards the equilibrium distribution;
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dissipative dynamics in a regular chain of seven molecules with nearest—neighbor coupling of
strength J (Joun/J = 0mnt1 + Omn—1):

(A) position of the energy levels (grey bars) as well as oscillator strengths (solid bars)

(B) transition rates from the state of highest energy to all states of lower energy (given at the re-
spective energy gap) for 1/kgT = J (grey) and 1/kgT = 10J (solid);

the two lower panels show the population dynamics p..(t) = P,(t) for 1/kgT = J (C) and 1/kgT =
10J (D);

initially the state of highest energy has been populated;
the curves are offset with increasing energy (short dashes: highest state, long dashes: lowest
state);

for the spectral density we have chosen j(w) = 0(w) exp{—w/w.} /2w? with the cut—off frequency
hw. = 0.5J;
the coupling matrix has been set to g, = 0.5J,,;
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